Quiver W-algebras

被引:69
|
作者
Kimura, Taro [1 ]
Pestun, Vasily [2 ]
机构
[1] Keio Univ, Tokyo, Japan
[2] IHES, Bures Sur Yvette, France
基金
欧洲研究理事会;
关键词
Supersymmetric gauge theories; Conformal field theories; W-algebras; Quantum groups; Quiver; instanton; HALL ALGEBRA; K-THEORY; QUANTUM; VARIETIES; VIRASORO; DEFORMATIONS; INSTANTONS;
D O I
10.1007/s11005-018-1072-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
引用
收藏
页码:1351 / 1381
页数:31
相关论文
共 50 条
  • [21] UNIFYING W-ALGEBRAS
    BLUMENHAGEN, R
    EHOLZER, W
    HONECKER, A
    HORNFECK, K
    HUBEL, R
    PHYSICS LETTERS B, 1994, 332 (1-2) : 51 - 60
  • [22] LINEARIZING W-ALGEBRAS
    KRIVONOS, SO
    SORIN, AS
    PHYSICS LETTERS B, 1994, 335 (01) : 45 - 50
  • [23] Webs of W-algebras
    Prochazka, Tomas
    Rapcak, Miroslav
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [24] ON THE CLASSIFICATION OF W-ALGEBRAS
    VERSTEGEN, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (10): : 1413 - 1448
  • [25] DUALITY IN W-ALGEBRAS
    FEIGIN, B
    FRENKEL, E
    DUKE MATHEMATICAL JOURNAL, 1991, 64 (02) : 75 - 82
  • [26] Supersymmetric W-algebras
    Alexander Molev
    Eric Ragoucy
    Uhi Rinn Suh
    Letters in Mathematical Physics, 2021, 111
  • [27] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [28] INFINITESIMAL CHEREDNIK ALGEBRAS AS W-ALGEBRAS
    Losev, I.
    Tsymbaliuk, A.
    TRANSFORMATION GROUPS, 2014, 19 (02) : 495 - 526
  • [29] INFINITESIMAL CHEREDNIK ALGEBRAS AS W-ALGEBRAS
    I. LOSEV
    A. TSYMBALIUK
    Transformation Groups, 2014, 19 : 495 - 526
  • [30] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    Inventiones mathematicae, 2019, 218 : 145 - 195