UNIFYING W-ALGEBRAS

被引:29
|
作者
BLUMENHAGEN, R [1 ]
EHOLZER, W [1 ]
HONECKER, A [1 ]
HORNFECK, K [1 ]
HUBEL, R [1 ]
机构
[1] INFN,I-10125 TURIN,ITALY
关键词
D O I
10.1016/0370-2693(94)90857-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that quantum Casimir W-algebras truncate at degenerate values of the central charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametrization of the central charge in terms of the rank of the underlying simple Lie algebra, the field content does not change with the rank of the Casimir algebra any more. This leads to identifications between the Casimir algebras themselves but also gives rise to new, 'unifying' W-algebras. For example, the kth unitary minimal model of WA(n) has a unifying W-algebra of type W(2,3,..., k2 + 3k + 1). These unifying W-algebras are non-freely generated on the quantum level and belong to a recently discovered class of W-algebras with infinitely, non-freely generated classical counterparts. Some of the identifications are indicated by level-rank-duality leading to a coset realization of these unifying W-algebras. Other unifying W-algebras are new, including e.g. algebras of type WD(-n). We point out that all unifying quantum W-algebras are finitely, but non-freely generated.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [1] W-algebras
    ORaifeartaigh, L
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (1-2): : 79 - 85
  • [2] FINITE W-ALGEBRAS
    TJIN, T
    PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [3] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2008, 13 : 671 - 713
  • [4] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718
  • [5] Trialities of W-algebras
    Creutzig, Thomas
    Linshaw, Andrew R.
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (01) : 69 - 194
  • [6] Quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1351 - 1381
  • [7] ON THE ORIGIN OF W-ALGEBRAS
    BILAL, A
    FOCK, VV
    KOGAN, II
    NUCLEAR PHYSICS B, 1991, 359 (2-3) : 635 - 672
  • [8] Webs of W-algebras
    Tomáš Procházka
    Miroslav Rapčák
    Journal of High Energy Physics, 2018
  • [9] FOLDING THE W-ALGEBRAS
    FRAPPAT, L
    RAGOUCY, E
    SORBA, P
    NUCLEAR PHYSICS B, 1993, 404 (03) : 805 - 836
  • [10] Supersymmetric W-algebras
    Molev, Alexander
    Ragoucy, Eric
    Suh, Uhi Rinn
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (01)