Congruence of polynomial matrices

被引:0
|
作者
Pierce, S [1 ]
机构
[1] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
关键词
congruence; diagonally dominant;
D O I
10.1016/S0024-3795(99)00029-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = C[t] be the ring of all polynomials in the real variable t with complex coefficients. We show that if A is an n-square hermitian matrix with entries in R, then A is congruent to the direct sum of a zero matrix and a diagonally dominant matrix. Here, diagonally dominant means that the degree of any main diagonal entry is greater than the degree of any other entry in the same row and column. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] CONGRUENCE OF ANALYTIC-FUNCTIONS MODULO A POLYNOMIAL
    VOSTRY, Z
    [J]. KYBERNETIKA, 1977, 13 (02) : 116 - 137
  • [42] A POLYNOMIAL CONGRUENCE MODULO HIGHER AND HIGHER POWERS
    GESSEL, I
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (07): : 485 - 485
  • [43] NOVEL THEORY FOR POLYNOMIAL AND RATIONAL MATRICES AT INFINITY .1. POLYNOMIAL-MATRICES
    TAN, S
    VANDEWALLE, J
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 545 - 559
  • [44] Unitary congruence automorphisms of the space of Toeplitz matrices
    Abdikalykov, A. K.
    Chugunov, V. N.
    Ikramov, Kh D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (06): : 1195 - 1203
  • [45] Assessing Congruence Among Ultrametric Distance Matrices
    Cambell, Veronique
    Legendre, Pierre
    Lapointe, Francois-Joseph
    [J]. JOURNAL OF CLASSIFICATION, 2009, 26 (01) : 103 - 117
  • [46] Toeplitz Bezoutians of a quadruple of polynomial matrices and polynomial model
    Wu, Huazhang
    Hua, Zhaocheng
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 263 - 267
  • [47] Congruence of symmetric matrices over local rings
    Cao, Yonglin
    Szechtman, Fernando
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (09) : 1687 - 1690
  • [48] Scaling of symmetric matrices by positive diagonal congruence
    Johnson, Charles R.
    Reams, Robert
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (02): : 123 - 140
  • [49] Quadratically normal and congruence-normal matrices
    Ikramov K.D.
    Fassbender H.
    [J]. Journal of Mathematical Sciences, 2010, 165 (5) : 521 - 532
  • [50] Congruence of rational matrices defined by an integer matrix
    Gasiorek, Marcin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 440