Congruence of polynomial matrices

被引:0
|
作者
Pierce, S [1 ]
机构
[1] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
关键词
congruence; diagonally dominant;
D O I
10.1016/S0024-3795(99)00029-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = C[t] be the ring of all polynomials in the real variable t with complex coefficients. We show that if A is an n-square hermitian matrix with entries in R, then A is congruent to the direct sum of a zero matrix and a diagonally dominant matrix. Here, diagonally dominant means that the degree of any main diagonal entry is greater than the degree of any other entry in the same row and column. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Perturbation of matrices diagonalizable under congruence
    Furtado, S
    Johnson, CR
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (01) : 81 - 88
  • [22] A criterion for unitary congruence between matrices
    Yu. A. Al’pin
    Kh. D. Ikramov
    [J]. Doklady Mathematics, 2011, 83 : 141 - 142
  • [23] ON POLYNOMIAL CENTROSYMMETRIC MATRICES
    Arthi, B.
    Sivasuprajha, R., V
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (05): : 741 - 748
  • [24] A criterion for unitary congruence between matrices
    Al'pin, Yu. A.
    Ikramov, Kh. D.
    [J]. DOKLADY MATHEMATICS, 2011, 83 (02) : 141 - 142
  • [25] Congruence of (2 x 2) matrices
    Williams, GD
    [J]. DISCRETE MATHEMATICS, 2000, 224 (1-3) : 293 - 297
  • [26] Factorable polynomial matrices
    Shavarovskii, BZ
    [J]. MATHEMATICAL NOTES, 2000, 68 (3-4) : 507 - 518
  • [27] POLYNOMIAL IDENTITIES FOR MATRICES
    WATKINS, W
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 364 - 368
  • [28] ON SIMULTANEOUS HERMITIAN CONGRUENCE TRANSFORMATIONS OF MATRICES
    MAJINDAR, KN
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (08): : 842 - &
  • [29] Factorable polynomial matrices
    B. Z. Shavarovskii
    [J]. Mathematical Notes, 2000, 68 : 507 - 518
  • [30] Positivstellensatze for polynomial matrices
    Trung Hoa Dinh
    Minh Toan Ho
    Cong Trinh Le
    [J]. POSITIVITY, 2021, 25 (04) : 1295 - 1312