Approximate Bayesian inference under informative sampling

被引:17
|
作者
Wang, Z. [1 ]
Kim, J. K. [1 ]
Yang, S. [2 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] North Carolina State Univ, Dept Stat, 2311 Stinson Dr,Campus Box 8203, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Analytic inference; Complex sampling; Predictive inference; Pseudolikelihood; COMPLEX SURVEY DATA; COMBINING INFORMATION; POPULATION; MODEL; REGRESSION;
D O I
10.1093/biomet/asx073
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Statistical inference with complex survey data is challenging because the sampling design can be informative, and ignoring it can produce misleading results. Current methods of Bayesian inference under complex sampling assume that the sampling design is noninformative for the specified model. In this paper, we propose a Bayesian approach which uses the sampling distribution of a summary statistic to derive the posterior distribution of the parameters of interest. Asymptotic properties of the method are investigated. It is directly applicable to combining information from two independent surveys and to calibration estimation in survey sampling. A simulation study confirms that it can provide valid estimation under informative sampling. We apply it to a measurement error problem using data from the Korean Longitudinal Study of Aging.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [41] The Value of Informative Priors in Bayesian Inference with Sparse Data
    Lenk, Peter
    Orme, Bryan
    [J]. JOURNAL OF MARKETING RESEARCH, 2009, 46 (06) : 832 - 845
  • [42] Efficient sampling for Bayesian inference of conjunctive Bayesian networks
    Sakoparnig, Thomas
    Beerenwinkel, Niko
    [J]. BIOINFORMATICS, 2012, 28 (18) : 2318 - 2324
  • [43] Bayesian Nonparametric Weighted Sampling Inference
    Si, Yajuan
    Pillai, Natesh S.
    Gelman, Andrew
    [J]. BAYESIAN ANALYSIS, 2015, 10 (03): : 605 - 625
  • [44] Nonparametric Inference for Copulas and Measures of Dependence Under Length-Biased Sampling and Informative Censoring
    Rabhi, Yassir
    Bouezmarni, Taoufik
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (531) : 1268 - 1278
  • [45] Approximate Bayesian computation using indirect inference
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Faddy, Malcolm J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2011, 60 : 317 - 337
  • [46] On the Expressiveness of Approximate Inference in Bayesian Neural Networks
    Foong, Andrew Y. K.
    Burt, David R.
    Li, Yingzhen
    Turner, Richard E.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [47] A BAYESIAN-APPROACH TO APPROXIMATE CONDITIONAL INFERENCE
    SWEETING, TJ
    [J]. BIOMETRIKA, 1995, 82 (01) : 25 - 36
  • [48] STATISTICAL INFERENCE FOR APPROXIMATE BAYESIAN OPTIMAL DESIGN
    Jaiswal, Prateek
    Honnappa, Harsha
    [J]. 2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 2138 - 2148
  • [49] Approximate Bayesian Inference for Doubly Robust Estimation
    Graham, Daniel J.
    McCoy, Emma J.
    Stephens, David A.
    [J]. BAYESIAN ANALYSIS, 2016, 11 (01): : 47 - 69
  • [50] Approximate Bayesian inference for mixture cure models
    E. Lázaro
    C. Armero
    V. Gómez-Rubio
    [J]. TEST, 2020, 29 : 750 - 767