Effect of micromotion and local stress in quantum simulations with trapped ions in optical tweezers

被引:6
|
作者
Bond, Liam [1 ,2 ]
Lenstra, Lisa [3 ]
Gerritsma, Rene [1 ,2 ]
Safavi-Naini, Arghavan [1 ,2 ]
机构
[1] QuSoft, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[2] Univ Amsterdam, Inst Theoret Phys, Inst Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Van der Waals Zeeman Inst, Inst Phys, NL-1098 XH Amsterdam, Netherlands
基金
荷兰研究理事会;
关键词
PHASE-TRANSITIONS; DYNAMICS;
D O I
10.1103/PhysRevA.106.042612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The ability to program and control interactions provides the key to implementing large-scale quantum simulation and computation in trapped-ion systems. Adding optical tweezers, which can tune the phonon spectrum and thus modify the phonon-mediated spin-spin interaction, was recently proposed as a way of programing quantum simulators for a broader range of spin models [Arias Espinoza et al., Phys. Rev. A 104, 013302 (2021)]. In this work we study the robustness of our findings in the presence of experimental imperfections: micromotion, local stress, and intensity noise. We show that the effects of micromotion can be easily circumvented when designing and optimizing tweezer patterns to generate a target interaction. Furthermore, while local stress, whereby the tweezers apply small forces on individual ions, may appear to enable further tuning of the spin-spin interactions, any additional flexibility is negligible. We conclude that optical tweezers are a useful method for controlling interactions in trapped-ion quantum simulators in the presence of micromotion and imperfections in the tweezer alignment, but require intensity stabilization on the subpercent level.
引用
收藏
页数:7
相关论文
共 49 条
  • [21] Towards analog quantum simulations of lattice gauge theories with trapped ions
    Davoudi, Zohreh
    Hafezi, Mohammad
    Monroe, Christopher
    Pagano, Guido
    Seif, Alireza
    Shaw, Andrew
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [22] Experimental quantum simulations of many-body physics with trapped ions
    Schneider, Ch
    Porras, Diego
    Schaetz, Tobias
    REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
  • [23] Quantum simulation of the dynamical Casimir effect with trapped ions
    Trautmann, N.
    Hauke, P.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [24] Quantum computing with trapped ions in an optical cavity via Raman transition
    Inst. for Sci. Interchange Found., Viale Settimio Severo 65, 1-10133 Torino, Italy
    不详
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 054303
  • [25] Quantum computing with trapped ions in an optical cavity via Raman transition
    Feng, M
    PHYSICAL REVIEW A, 2002, 66 (05): : 4
  • [26] Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control
    Chung-You Shih
    Sainath Motlakunta
    Nikhil Kotibhaskar
    Manas Sajjan
    Roland Hablützel
    Rajibul Islam
    npj Quantum Information, 7
  • [27] Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control
    Shih, Chung-You
    Motlakunta, Sainath
    Kotibhaskar, Nikhil
    Sajjan, Manas
    Hablutzel, Roland
    Islam, Rajibul
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [28] Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams
    Staanum, P
    Drewsen, M
    Molmer, K
    PHYSICAL REVIEW A, 2004, 70 (05): : 052327 - 1
  • [29] Control of decoherence: Dynamical decoupling versus quantum Zeno effect - A case study for trapped ions
    Tasaki, S
    Tokuse, A
    Facchi, P
    Pascazio, S
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 98 (02) : 160 - 172
  • [30] Scheme for Quantum-Logic Based Transfer of Accuracy in Polarizability Measurement for Trapped Ions Using a Moving Optical Lattice
    Wolf, Fabian
    PHYSICAL REVIEW LETTERS, 2024, 132 (08)