Network Tomography in Hyperbolic Space

被引:0
|
作者
Casey, Stephen [1 ]
机构
[1] Amer Univ, Dept Math & Stat, Washington, DC 20016 USA
来源
2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA) | 2019年
关键词
INTEGRAL GEOMETRY;
D O I
10.1109/sampta45681.2019.9030912
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper addresses the problems of network analysis and network security, outlining a computationally feasible method of monitoring networks, and detecting (hyper)-active increase in subnetwork activity, such as one would see in viral or network attack activity. Additionally, it outlines a systematic method of detecting the source of activity, and if needed, isolate and/or shut-down subcomponents of the network.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Resonances for Obstacles in Hyperbolic Space
    Peter Hintz
    Maciej Zworski
    Communications in Mathematical Physics, 2018, 359 : 699 - 731
  • [42] RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE
    de Lima, Henrique Fernandes
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 97 - 103
  • [43] Bifurcating Nodoids in Hyperbolic Space
    Jleli, Mohamed
    Lopez, Rafael
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 849 - 865
  • [44] Symmetries in the hyperbolic Hilbert space
    Ulrych, S
    PHYSICS LETTERS B, 2005, 618 (1-4) : 233 - 236
  • [45] Hyperbolic times in Minkowski space
    Zenginoglu, Anil
    AMERICAN JOURNAL OF PHYSICS, 2024, 92 (12) : 965 - 974
  • [46] Magnetic bags in hyperbolic space
    Bolognesi, Stefano
    Harland, Derek
    Sutcliffe, Paul
    PHYSICAL REVIEW D, 2015, 92 (02):
  • [47] The analytic continuation of hyperbolic space
    Yunhi Cho
    Hyuk Kim
    Geometriae Dedicata, 2012, 161 : 129 - 155
  • [48] On Procrustes Analysis in Hyperbolic Space
    Tabaghi, Puoya
    Dokmanic, Ivan
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1120 - 1124
  • [49] On the structure of submanifolds in the hyperbolic space
    Hezi Lin
    Monatshefte für Mathematik, 2016, 180 : 579 - 594
  • [50] Convex hulls in the hyperbolic space
    Itai Benjamini
    Ronen Eldan
    Geometriae Dedicata, 2012, 160 : 365 - 371