Network Tomography in Hyperbolic Space

被引:0
|
作者
Casey, Stephen [1 ]
机构
[1] Amer Univ, Dept Math & Stat, Washington, DC 20016 USA
来源
2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA) | 2019年
关键词
INTEGRAL GEOMETRY;
D O I
10.1109/sampta45681.2019.9030912
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper addresses the problems of network analysis and network security, outlining a computationally feasible method of monitoring networks, and detecting (hyper)-active increase in subnetwork activity, such as one would see in viral or network attack activity. Additionally, it outlines a systematic method of detecting the source of activity, and if needed, isolate and/or shut-down subcomponents of the network.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] On Bisectors in Quaternionic Hyperbolic Space
    Igor A. R. Almeida
    Jaime L. O. Chamorro
    Nikolay Gusevskii
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [32] Poisson cylinders in hyperbolic space
    Broman, Erik
    Tykesson, Johan
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 25
  • [33] ON THE UMBILICITY OF HYPERSURFACES IN THE HYPERBOLIC SPACE
    Aquino, C. P.
    Batista, M.
    De Lima, H. F.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (01) : 45 - 58
  • [34] On an inequality of Brendle in the hyperbolic space
    Hijazi, Oussama
    Montiel, Sebastian
    Raulot, Simon
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (03) : 322 - 326
  • [35] A characteristic of hyperbolic space form
    Chen, ZH
    Zhou, CH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (01) : 51 - 56
  • [36] Critical phenomena in hyperbolic space
    Mnasri, Karim
    Jeevanesan, Bhilahari
    Schmalian, Joerg
    PHYSICAL REVIEW B, 2015, 92 (13)
  • [38] On the structure of submanifolds in the hyperbolic space
    Lin, Hezi
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (03): : 579 - 594
  • [39] Minimal planes in hyperbolic space
    Coskunuzer, B
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2004, 12 (04) : 821 - 836
  • [40] DARBOUX MOVEMENTS IN HYPERBOLIC SPACE
    PINKALL, U
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1984, 54 : 75 - 82