Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model

被引:79
|
作者
Premnath, KN [1 ]
Abraham, J [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, MJ Zucrow Labs, W Lafayette, IN 47907 USA
关键词
D O I
10.1063/1.2148987
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we report simulations of drop-drop collisions using a multi-relaxation-time multiphase flow lattice Boltzmann model. Employing a multi-relaxation-time (MRT) model in lieu of the Bhatnagar-Gross-Krook (BGK) model used in the standard lattice-Boltzmann equation enables realization of stable computations of drop collisions at relatively lower fluid viscosities without increasing the lattice resolution to prohibitive levels. Head-on and off-center computations of collisions are carried out using axisymmetric and three-dimensional (3D) versions of the MRT model, respectively. Time-resolved results showing the interactions of the interfaces of drops for different characteristic nondimensional parameters are presented. Computations show that at low Weber numbers, We, coalescence with relatively smaller deformation occurs, sometimes entrapping a stable microbubble. At higher We, head-on collisions lead to reflexive separation with or without the formation of satellite droplets. The size of the satellite droplets appears to increase with increase in the We. The Ohnesorge number, Oh, seems to modulate the transient characteristics and the outcome of collisions. It is found that the greater the Oh, the smaller is the size of the satellite droplets formed. For off-center collisions at a given We, at lower values of the impact parameter permanent coalescence is observed, while higher values result in separation by stretching action. These findings are in satisfactory agreement with experimental observations.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Multiple-relaxation-time lattice-Boltzmann model for multiphase flow
    McCracken, ME
    Abraham, J
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [2] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    SongGui Chen
    QiCheng Sun
    Feng Jin
    JianGuo Liu
    Science China Physics, Mechanics and Astronomy, 2014, 57 : 532 - 540
  • [3] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    CHEN SongGui
    SUN QiCheng
    JIN Feng
    LIU JianGuo
    Science China(Physics,Mechanics & Astronomy), 2014, Mechanics & Astronomy)2014 (03) : 532 - 540
  • [4] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    Chen SongGui
    Sun QiCheng
    Jin Feng
    Liu JianGuo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (03) : 532 - 540
  • [5] Multiple-relaxation-time Lattice-Boltzmann simulation of direct carbon fuel cell
    Filahi, I.
    Hasnaoui, M.
    Amahmid, A.
    El Mansouri, A.
    Alouah, M.
    Dahani, Y.
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 3157 - 3160
  • [6] Double multiple-relaxation-time model of lattice-Boltzmann magnetohydrodynamics at low magnetic Reynolds numbers
    Magacho, B.
    Tavares, H. S.
    Moriconi, L.
    Loureiro, J. B. R.
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [7] Multiple-relaxation-time lattice Boltzmann kinetic model for combustion
    Xu, Aiguo
    Lin, Chuandong
    Zhang, Guangcai
    Li, Yingjun
    PHYSICAL REVIEW E, 2015, 91 (04)
  • [8] A multiple-relaxation-time lattice Boltzmann model for Burgers equation
    Yu, Xiaomei
    Zhang, Ling
    Hu, Beibei
    Hu, Ye
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 13342 - 13351
  • [9] Multiple-relaxation-time lattice Boltzmann model for compressible fluids
    Chen, Feng
    Xu, Aiguo
    Zhang, Guangcai
    Li, Yingjun
    PHYSICS LETTERS A, 2011, 375 (21) : 2129 - 2139
  • [10] A multiple-relaxation-time lattice Boltzmann model for radiative transfer equation
    Liu, Xiaochuan
    Huang, Yong
    Wang, Cun-Hai
    Zhu, Keyong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429