Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model

被引:79
|
作者
Premnath, KN [1 ]
Abraham, J [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, MJ Zucrow Labs, W Lafayette, IN 47907 USA
关键词
D O I
10.1063/1.2148987
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we report simulations of drop-drop collisions using a multi-relaxation-time multiphase flow lattice Boltzmann model. Employing a multi-relaxation-time (MRT) model in lieu of the Bhatnagar-Gross-Krook (BGK) model used in the standard lattice-Boltzmann equation enables realization of stable computations of drop collisions at relatively lower fluid viscosities without increasing the lattice resolution to prohibitive levels. Head-on and off-center computations of collisions are carried out using axisymmetric and three-dimensional (3D) versions of the MRT model, respectively. Time-resolved results showing the interactions of the interfaces of drops for different characteristic nondimensional parameters are presented. Computations show that at low Weber numbers, We, coalescence with relatively smaller deformation occurs, sometimes entrapping a stable microbubble. At higher We, head-on collisions lead to reflexive separation with or without the formation of satellite droplets. The size of the satellite droplets appears to increase with increase in the We. The Ohnesorge number, Oh, seems to modulate the transient characteristics and the outcome of collisions. It is found that the greater the Oh, the smaller is the size of the satellite droplets formed. For off-center collisions at a given We, at lower values of the impact parameter permanent coalescence is observed, while higher values result in separation by stretching action. These findings are in satisfactory agreement with experimental observations.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] A general multiple-relaxation-time Boltzmann collision model
    Shan, Xiaowen
    Chen, Hudong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04): : 635 - 643
  • [22] Stability conditions of multiple-relaxation-time lattice Boltzmann model for seismic wavefield modeling
    Jiang, Chuntao
    Zhou, Hui
    Xia, Muming
    Tang, Jinxuan
    Jiang, Shuqi
    Zhang, Mingkun
    JOURNAL OF APPLIED GEOPHYSICS, 2022, 204
  • [23] A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
    Liu, Qing
    He, Ya-Ling
    Li, Qing
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 : 761 - 775
  • [24] A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation
    Huang, Rongzong
    Wu, Huiying
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 50 - 63
  • [25] Improved multiple-relaxation-time lattice Boltzmann model for Allen-Cahn equation
    Yan, Xianzhong
    Ye, Yonglong
    Chen, Jun
    Wang, Xiaofeng
    Du, Rui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (07):
  • [26] A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection
    Rui Du
    Wenwen Liu
    Journal of Scientific Computing, 2013, 56 : 122 - 130
  • [27] A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection
    Du, Rui
    Liu, Wenwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) : 122 - 130
  • [28] A Multiple-Relaxation-Time Lattice-Boltzmann Model for Bacterial Chemotaxis: Effects of Initial Concentration, Diffusion, and Hydrodynamic Dispersion on Traveling Bacterial Bands
    Zhifeng Yan
    Markus Hilpert
    Bulletin of Mathematical Biology, 2014, 76 : 2449 - 2475
  • [29] Viscous absorbing boundary of the multiple-relaxation-time lattice Boltzmann method
    Jiang C.-T.
    Zhou H.
    Xia M.
    Tang J.-X.
    Wang Y.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (05): : 1030 - 1038
  • [30] A Multiple-Relaxation-Time Lattice-Boltzmann Model for Bacterial Chemotaxis: Effects of Initial Concentration, Diffusion, and Hydrodynamic Dispersion on Traveling Bacterial Bands
    Yan, Zhifeng
    Hilpert, Markus
    BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (10) : 2449 - 2475