Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection

被引:62
|
作者
Goldsmith, Jeff [1 ]
Huang, Lei [2 ]
Crainiceanu, Ciprian M. [2 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
关键词
Binary Markov random field; Gaussian Markov random field; Markov chain Monte Carlo; MULTIPLE-SCLEROSIS; MODELS; MRI;
D O I
10.1080/10618600.2012.743437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes' inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in the online Appendix (see the "Supplementary Materials" section). We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white-matter microstructure at every voxel of the corpus callosum for hundreds of subjects.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [41] Model uncertainty and variable selection in Bayesian lasso regression
    Hans, Chris
    [J]. STATISTICS AND COMPUTING, 2010, 20 (02) : 221 - 229
  • [42] A Bayesian variable selection approach to longitudinal quantile regression
    Priya Kedia
    Damitri Kundu
    Kiranmoy Das
    [J]. Statistical Methods & Applications, 2023, 32 : 149 - 168
  • [43] BAYESIAN VARIABLE SELECTION IN LINEAR-REGRESSION - COMMENT
    MALLOWS, CL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) : 1034 - 1035
  • [44] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [45] Bayesian Image-on-Scalar Regression with a Spatial Global-Lo cal Spike-and-Slab Prior
    Zeng, Zijian
    Li, Meng
    Vannucci, Marina
    [J]. BAYESIAN ANALYSIS, 2024, 19 (01): : 235 - 260
  • [46] Bayesian scale mixtures of normals linear regression and Bayesian quantile regression with big data and variable selection
    Chu, Yuanqi
    Yin, Zhouping
    Yu, Keming
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [47] Comparison of Bayesian objective procedures for variable selection in linear regression
    Elías Moreno
    F. Javier Girón
    [J]. TEST, 2008, 17 : 472 - 490
  • [48] Bayesian Estimation of Prediction Error and Variable Selection in Linear Regression
    Neath, Andrew A.
    Cavanaugh, Joseph E.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (02) : 257 - 270
  • [49] Bayesian Variable Selection Regression of Multivariate Responses for Group Data
    Liquet, B.
    Mengersen, K.
    Pettitt, A. N.
    Sutton, M.
    [J]. BAYESIAN ANALYSIS, 2017, 12 (04): : 1039 - 1067
  • [50] Bayesian variable selection logistic regression with paired proteomic measurements
    Kakourou, Alexia
    Mertens, Bart
    [J]. BIOMETRICAL JOURNAL, 2018, 60 (05) : 1003 - 1020