Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection

被引:62
|
作者
Goldsmith, Jeff [1 ]
Huang, Lei [2 ]
Crainiceanu, Ciprian M. [2 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
关键词
Binary Markov random field; Gaussian Markov random field; Markov chain Monte Carlo; MULTIPLE-SCLEROSIS; MODELS; MRI;
D O I
10.1080/10618600.2012.743437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes' inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in the online Appendix (see the "Supplementary Materials" section). We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white-matter microstructure at every voxel of the corpus callosum for hundreds of subjects.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [21] Nonparametric regression using Bayesian variable selection
    Smith, M
    Kohn, R
    [J]. JOURNAL OF ECONOMETRICS, 1996, 75 (02) : 317 - 343
  • [22] An objective Bayesian procedure for variable selection in regression
    Giron, F. Javier
    Moreno, Elias
    Martinez, M. Lina
    [J]. ADVANCES IN DISTRIBUTION THEORY, ORDER STATISTICS, AND INFERENCE, 2006, : 389 - +
  • [23] Bayesian variable and transformation selection in linear regression
    Hoeting, JA
    Raftery, AE
    Madigan, D
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (03) : 485 - 507
  • [24] Bayesian Approximate Kernel Regression With Variable Selection
    Crawford, Lorin
    Wood, Kris C.
    Zhou, Xiang
    Mukherjee, Sayan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1710 - 1721
  • [25] Variable selection in nonlinear function-on-scalar regression
    Ghosal, Rahul
    Maity, Arnab
    [J]. BIOMETRICS, 2023, 79 (01) : 292 - 303
  • [26] Bayesian Variable Selection in Spatial Autoregressive Models
    Piribauer, Philipp
    Cuaresma, Jesus Crespo
    [J]. SPATIAL ECONOMIC ANALYSIS, 2016, 11 (04) : 457 - 479
  • [27] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [28] Model uncertainty and variable selection in Bayesian lasso regression
    Chris Hans
    [J]. Statistics and Computing, 2010, 20 : 221 - 229
  • [29] Objective Bayesian variable selection in linear regression model
    Kang, Sang Gil
    Kim, Dal Ho
    Lee, Woo Dong
    Kim, Yongku
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (06) : 1133 - 1157
  • [30] Application of Bayesian variable selection in logistic regression model
    Bangchang, Kannat Na
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 13336 - 13345