Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection

被引:62
|
作者
Goldsmith, Jeff [1 ]
Huang, Lei [2 ]
Crainiceanu, Ciprian M. [2 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
关键词
Binary Markov random field; Gaussian Markov random field; Markov chain Monte Carlo; MULTIPLE-SCLEROSIS; MODELS; MRI;
D O I
10.1080/10618600.2012.743437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes' inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in the online Appendix (see the "Supplementary Materials" section). We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white-matter microstructure at every voxel of the corpus callosum for hundreds of subjects.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [1] SPATIAL BAYESIAN VARIABLE SELECTION AND GROUPING FOR HIGH-DIMENSIONAL SCALAR-ON-IMAGE REGRESSION
    Li, Fan
    Zhang, Tingting
    Wang, Quanli
    Gonzalez, Marlen Z.
    Maresh, Erin L.
    Coan, James A.
    [J]. ANNALS OF APPLIED STATISTICS, 2015, 9 (02): : 687 - 713
  • [2] Bayesian Nonparametric Scalar-on-Image Regression via Potts-Gibbs Random Partition Models
    Teo, Mica Shu Xian
    Wade, Sara
    [J]. NEW FRONTIERS IN BAYESIAN STATISTICS, BAYSM 2021, 2022, 405 : 45 - 56
  • [3] Nonparametric quantile scalar-on-image regression
    Wang, Chuchu
    Song, Xinyuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 191
  • [4] Generalized Scalar-on-Image Regression Models via Total Variation
    Wang, Xiao
    Zhu, Hongtu
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) : 1156 - 1168
  • [5] Scalar-on-image regression via the soft-thresholded Gaussian process
    Kang, Jian
    Reich, Brian J.
    Staicu, Ana-Maria
    [J]. BIOMETRIKA, 2018, 105 (01) : 165 - 184
  • [6] The impact of model assumptions in scalar-on-image regression
    Happ, Clara
    Greven, Sonja
    Schmid, Volker J.
    [J]. STATISTICS IN MEDICINE, 2018, 37 (28) : 4298 - 4317
  • [7] Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes
    Huang, Lei
    Goldsmith, Jeff
    Reiss, Philip T.
    Reich, Daniel S.
    Crainiceanu, Ciprian M.
    [J]. NEUROIMAGE, 2013, 83 : 210 - 223
  • [8] Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    Stefanie Kalus
    Philipp G. Sämann
    Ludwig Fahrmeir
    [J]. Advances in Data Analysis and Classification, 2014, 8 : 63 - 83
  • [9] Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    Kalus, Stefanie
    Saemann, Philipp G.
    Fahrmeir, Ludwig
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (01) : 63 - 83
  • [10] Quantifying uncertainty in brain-predicted age using scalar-on-image quantile regression
    Palma, Marco
    Tavakoli, Shahin
    Brettschneider, Julia
    Nichols, Thomas E.
    [J]. NEUROIMAGE, 2020, 219