A Central Limit Theorem in Many-Body Quantum Dynamics

被引:31
|
作者
Ben Arous, Gerard [1 ]
Kirkpatrick, Kay [2 ]
Schlein, Benjamin [3 ]
机构
[1] NYU, Courant Inst Math, New York, NY 10012 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Inst Appl Math, D-53115 Bonn, Germany
基金
美国国家科学基金会;
关键词
NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; CLASSICAL FIELD LIMIT; SCATTERING THEORY; DERIVATION;
D O I
10.1007/s00220-013-1722-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the many body quantum evolution of bosonic systems in the mean field limit. The dynamics is known to be well approximated by the Hartree equation. So far, the available results have the form of a law of large numbers. In this paper we go one step further and we show that the fluctuations around the Hartree evolution satisfy a central limit theorem. Interestingly, the variance of the limiting Gaussian distribution is determined by a time-dependent Bogoliubov transformation describing the dynamics of initial coherent states in a Fock space representation of the system.
引用
下载
收藏
页码:371 / 417
页数:47
相关论文
共 50 条
  • [41] Fast nonadiabatic dynamics of many-body quantum systems
    Larder, B.
    Gericke, D. O.
    Richardson, S.
    Mabey, P.
    White, T. G.
    Gregori, G.
    SCIENCE ADVANCES, 2019, 5 (11):
  • [42] Uncovering local integrability in quantum many-body dynamics
    Oles Shtanko
    Derek S. Wang
    Haimeng Zhang
    Nikhil Harle
    Alireza Seif
    Ramis Movassagh
    Zlatko Minev
    Nature Communications, 16 (1)
  • [43] Terahertz control of many-body dynamics in quantum materials
    Yang, Chia-Jung
    Li, Jingwen
    Fiebig, Manfred
    Pal, Shovon
    NATURE REVIEWS MATERIALS, 2023, 8 (08) : 518 - 532
  • [44] Scaling of quantum Zeno dynamics in many-body systems
    Yu, Wing-Chi
    Wang, Li-Gang
    Gu, Shi-Jian
    Lin, Hai-Qing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [45] Quantum power functional theory for many-body dynamics
    Schmidt, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (17):
  • [46] Dynamics of measured many-body quantum chaotic systems
    Altland, Alexander
    Buchhold, Michael
    Diehl, Sebastian
    Micklitz, Tobias
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [47] Terahertz control of many-body dynamics in quantum materials
    Chia-Jung Yang
    Jingwen Li
    Manfred Fiebig
    Shovon Pal
    Nature Reviews Materials, 2023, 8 : 518 - 532
  • [48] Speed limits and locality in many-body quantum dynamics
    Chen, Chi-Fang
    Lucas, Andrew
    Yin, Chao
    REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (11)
  • [49] Quench dynamics of isolated many-body quantum systems
    Torres-Herrera, E. J.
    Santos, Lea F.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [50] Optimal Control Technique for Many-Body Quantum Dynamics
    Doria, Patrick
    Calarco, Tommaso
    Montangero, Simone
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)