A Central Limit Theorem in Many-Body Quantum Dynamics

被引:31
|
作者
Ben Arous, Gerard [1 ]
Kirkpatrick, Kay [2 ]
Schlein, Benjamin [3 ]
机构
[1] NYU, Courant Inst Math, New York, NY 10012 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Inst Appl Math, D-53115 Bonn, Germany
基金
美国国家科学基金会;
关键词
NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; CLASSICAL FIELD LIMIT; SCATTERING THEORY; DERIVATION;
D O I
10.1007/s00220-013-1722-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the many body quantum evolution of bosonic systems in the mean field limit. The dynamics is known to be well approximated by the Hartree equation. So far, the available results have the form of a law of large numbers. In this paper we go one step further and we show that the fluctuations around the Hartree evolution satisfy a central limit theorem. Interestingly, the variance of the limiting Gaussian distribution is determined by a time-dependent Bogoliubov transformation describing the dynamics of initial coherent states in a Fock space representation of the system.
引用
下载
收藏
页码:371 / 417
页数:47
相关论文
共 50 条
  • [21] Stroboscopic observation of quantum many-body dynamics
    Kessler, Stefan
    Holzner, Andreas
    McCulloch, Ian P.
    von Delft, Jan
    Marquardt, Florian
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [22] Adiabatic tracking of quantum many-body dynamics
    Saberi, Hamed
    Opatrny, Tomas
    Molmer, Klaus
    del Campo, Adolfo
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [23] Entanglement dynamics in quantum many-body systems
    Ho, Wen Wei
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [24] Multivariate Central Limit Theorem in Quantum Dynamics
    Buchholz, Simon
    Saffirio, Chiara
    Schlein, Benjamin
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) : 113 - 152
  • [25] Multivariate Central Limit Theorem in Quantum Dynamics
    Simon Buchholz
    Chiara Saffirio
    Benjamin Schlein
    Journal of Statistical Physics, 2014, 154 : 113 - 152
  • [26] A Many-Body RAGE Theorem
    Lampart, Jonas
    Lewin, Mathieu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 340 (03) : 1171 - 1186
  • [27] A Many-Body RAGE Theorem
    Jonas Lampart
    Mathieu Lewin
    Communications in Mathematical Physics, 2015, 340 : 1171 - 1186
  • [28] Quantum information processing with quantum zeno many-body dynamics
    Monras, Alex
    Romero-Isart, Oriol
    Quantum Information and Computation, 2010, 10 (3-4): : 0201 - 0222
  • [29] QUANTUM INFORMATION PROCESSING WITH QUANTUM ZENO MANY-BODY DYNAMICS
    Monras, Alex
    Romero-Isart, Oriol
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (3-4) : 201 - 222
  • [30] A shortcut to the thermodynamic limit for quantum many-body calculations of metals
    Mihm, Tina N.
    Schafer, Tobias
    Ramadugu, Sai Kumar
    Weiler, Laura
    Gruneis, Andreas
    Shepherd, James J.
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (12): : 801 - 808