Lagrangian for the convection-diffusion equation

被引:7
|
作者
Cresson, Jacky [1 ]
Greff, Isabelle [1 ]
Inizan, Pierre [2 ]
机构
[1] Univ Pau & Pays Adour, Pau, France
[2] Observ Paris, IMCCE, F-75014 Paris, France
关键词
fractional calculus; variational calculus; partial differential equations; convection-diffusion equation; Lagrangian variational formulation; FORMULATION; MECHANICS; CALCULUS; SYSTEMS;
D O I
10.1002/mma.2651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the asymmetric fractional calculus of variations, we derive a fractional Lagrangian variational formulation of the convectiondiffusion equation in the special case of constant coefficients. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1885 / 1895
页数:11
相关论文
共 50 条
  • [31] Modified age methods for the convection-diffusion equation
    Lu, JF
    Zhang, BL
    Zuo, FL
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1998, 14 (01): : 65 - 75
  • [32] ERROR IN THE UPWIND DIFFERENCING OF THE CONVECTION-DIFFUSION EQUATION
    ALI, F
    MAYERS, DF
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 58 (02) : 201 - 224
  • [33] An inverse problem for a quasilinear convection-diffusion equation
    Feizmohammadi, Ali
    Kian, Yavar
    Uhlmann, Gunther
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
  • [35] Highly accurate method for the convection-diffusion equation
    Ismail, HNA
    Elbarbary, EME
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (02) : 271 - 280
  • [36] Lattice Boltzmann model for the convection-diffusion equation
    Chai, Zhenhua
    Zhao, T. S.
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [37] An inverse source problem for the convection-diffusion equation
    Rap, A
    Elliott, L
    Ingham, DB
    Lesnic, D
    Wen, X
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2006, 16 (2-3) : 125 - 150
  • [38] Iterative solution of steady convection-diffusion equation with dominant convection
    Krukier, LA
    Belokon, TV
    [J]. ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, 2000, : 185 - 191
  • [39] Numerical Solution of the Steady Convection-Diffusion Equation with Dominant Convection
    Krukier, L. A.
    Pichugina, O. A.
    Krukier, B. L.
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2095 - 2100
  • [40] On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion
    Cazacu, Cristian M.
    Ignat, Liviu I.
    Pazoto, Ademir F.
    [J]. NONLINEARITY, 2017, 30 (08) : 3126 - 3150