GLOBAL EXISTENCE OF MARTINGALE SOLUTIONS TO THE THREE-DIMENSIONAL STOCHASTIC COMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:0
|
作者
Wang, Dehua [1 ]
Wang, Huaqiao [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
WEAK SOLUTIONS; ERGODICITY; UNIQUENESS; DRIVEN; 2D; LAWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stochastic three-dimensional compressible Navier-Stokes equations are considered in a bounded domain with multiplicative noise. The global existence of martingale solution is established through the Galerkin approximation method, stopping time, compactness method and the Jakubowski-Skorokhod theorem. A martingale solution is a weak solution for the fluid variables and the Brownian motion on a probability space. The initial data is arbitrarily large and satisfies a natural compatibility condition.
引用
收藏
页码:1105 / 1154
页数:50
相关论文
共 50 条
  • [1] Existence of weak solutions to the three-dimensional steady compressible Navier-Stokes equations
    Jiang, Song
    Zhou, Chunhui
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (04): : 485 - 498
  • [2] Global Existence of Axisymmetric Pathwise Solutions for Stochastic Three-Dimensional Axisymmetric Navier-Stokes Equations
    Du, Lihuai
    Zhang, Ting
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 447 - 464
  • [3] GLOBAL LARGE SOLUTIONS TO THE THREE DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Zhai, Xiaoping
    Li, Yongsheng
    Zhou, Fujun
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1806 - 1843
  • [4] On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations
    Caraballo, T
    Real, J
    Taniguchi, T
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 459 - 479
  • [5] Global existence of solutions for compressible Navier-Stokes equations with vacuum
    Qin, Xulong
    Yao, Zheng-an
    Zhou, Wenshu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 226 - 238
  • [6] GLOBAL EXISTENCE OF SOLUTIONS FOR ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS
    LIONS, PL
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1335 - 1340
  • [7] Global attractors for the Navier-Stokes equations of three-dimensional compressible flow
    Feireisl, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01): : 35 - 39
  • [8] ON THE STABILITY OF GLOBAL SOLUTIONS TO THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Bahouri, Hajer
    Chemin, Jean-Yves
    Gallagher, Isabelle
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 843 - 911
  • [9] Existence of solutions for the compressible Navier-Stokes equations
    Yin, HC
    [J]. CHINESE SCIENCE BULLETIN, 1996, 41 (10): : 805 - 812
  • [10] Martingale solutions for the three-dimensional stochastic nonhomogeneous incompressible Navier-Stokes equations driven by Levy processes
    Chen, Robin Ming
    Wang, Dehua
    Wang, Huaqiao
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (07) : 2007 - 2051