GLOBAL EXISTENCE OF MARTINGALE SOLUTIONS TO THE THREE-DIMENSIONAL STOCHASTIC COMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:0
|
作者
Wang, Dehua [1 ]
Wang, Huaqiao [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
WEAK SOLUTIONS; ERGODICITY; UNIQUENESS; DRIVEN; 2D; LAWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stochastic three-dimensional compressible Navier-Stokes equations are considered in a bounded domain with multiplicative noise. The global existence of martingale solution is established through the Galerkin approximation method, stopping time, compactness method and the Jakubowski-Skorokhod theorem. A martingale solution is a weak solution for the fluid variables and the Brownian motion on a probability space. The initial data is arbitrarily large and satisfies a natural compatibility condition.
引用
收藏
页码:1105 / 1154
页数:50
相关论文
共 50 条