Global Existence of Axisymmetric Pathwise Solutions for Stochastic Three-Dimensional Axisymmetric Navier-Stokes Equations

被引:1
|
作者
Du, Lihuai [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Navier-Stokes equations; axisymmetric; global existence; AXIALLY-SYMMETRIC FLOWS; REGULARITY CRITERION; WEAK SOLUTIONS;
D O I
10.4208/eajam.220418.210718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stochastic three-dimensional Navier-Stokes system with the axisymmetric initial data and white noise is studied. It is shown that if the swirl component of the initial velocity field and the white noise are sufficiently small, then the axisymmetric pathwise solution is global in probability. Moreover, in the absence of the swirl, the pathwise axisymmetric solution is global almost surely.
引用
收藏
页码:447 / 464
页数:18
相关论文
共 50 条
  • [1] Global Axisymmetric Solutions to Three-Dimensional Navier-Stokes System
    Zhang, Ping
    Zhang, Ting
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (03) : 610 - 642
  • [2] GLOBAL EXISTENCE OF MARTINGALE SOLUTIONS TO THE THREE-DIMENSIONAL STOCHASTIC COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Wang, Dehua
    Wang, Huaqiao
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (11-12) : 1105 - 1154
  • [3] Axisymmetric solutions of the Navier-Stokes equations
    Gallagher, I
    Ibrahim, S
    Majdoub, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 791 - 794
  • [4] Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl
    Hou, Thomas Y.
    Ll, Congming
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (05) : 661 - 697
  • [5] EXISTENCE OF AXISYMMETRIC AND HOMOGENEOUS SOLUTIONS OF NAVIER-STOKES EQUATIONS IN CONE REGIONS
    Jiang, Zaihong
    Li, Li
    Lu, Wenbo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4231 - 4258
  • [6] On the regularity of the axisymmetric solutions of the Navier-Stokes equations
    Chae, D
    Lee, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) : 645 - 671
  • [7] On the regularity of the axisymmetric solutions of the Navier-Stokes equations
    Dongho Chae
    Jihoon Lee
    [J]. Mathematische Zeitschrift, 2002, 239 : 645 - 671
  • [8] On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations
    Caraballo, T
    Real, J
    Taniguchi, T
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 459 - 479
  • [9] The global solutions of axisymmetric Navier-Stokes equations with anisotropic initial data
    Chen, Hui
    Fang, Daoyuan
    Zhang, Ting
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [10] ON THE STABILITY OF GLOBAL SOLUTIONS TO THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Bahouri, Hajer
    Chemin, Jean-Yves
    Gallagher, Isabelle
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 843 - 911