Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine

被引:143
|
作者
Carrasco, Luis [1 ,2 ,3 ]
O'Neil, Aneurin W. [1 ]
Morton, R. Daniel [1 ]
Rowland, Clare S. [1 ]
机构
[1] Lancaster Environm Ctr, NERC Ctr Ecol & Hydrol, Lib Ave, Lancaster LA1 4AP, England
[2] Univ Tennessee, Natl Inst Math & Biol Synth, 1122 Volunteer Blvd, Knoxville, TN 37996 USA
[3] Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA
关键词
cloud computing; cloud masking; data fusion; gap filling; radar; supervised classifications; REMOTELY-SENSED DATA; TIME-SERIES; CROP CLASSIFICATION; CLOUD; TM; DIFFERENCE; ALGORITHM; FUSION; IMAGES; FOREST;
D O I
10.3390/rs11030288
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land cover mapping of large areas is challenging due to the significant volume of satellite data to acquire and process, as well as the lack of spatial continuity due to cloud cover. Temporal aggregation-the use of metrics (i.e., mean or median) derived from satellite data over a period of time-is an approach that benefits from recent increases in the frequency of free satellite data acquisition and cloud-computing power. This enables the efficient use of multi-temporal data and the exploitation of cloud-gap filling techniques for land cover mapping. Here, we provide the first formal comparison of the accuracy between land cover maps created with temporal aggregation of Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8 (L8) data from one-year and test whether this method matches the accuracy of traditional approaches. Thirty-two datasets were created for Wales by applying automated cloud-masking and temporally aggregating data over different time intervals, using Google Earth Engine. Manually processed S2 data was used for comparison using a traditional two-date composite approach. Supervised classifications were created, and their accuracy was assessed using field-based data. Temporal aggregation only matched the accuracy of the traditional two-date composite approach (77.9%) when an optimal combination of optical and radar data was used (76.5%). Combined datasets (S1, S2 or S1, S2, and L8) outperformed single-sensor datasets, while datasets based on spectral indices obtained the lowest levels of accuracy. The analysis of cloud cover showed that to ensure at least one cloud-free pixel per time interval, a maximum of two intervals per year for temporal aggregation were possible with L8, while three or four intervals could be used for S2. This study demonstrates that temporal aggregation is a promising tool for integrating large amounts of data in an efficient way and that it can compensate for the lower quality of automatic image selection and cloud masking. It also shows that combining data from different sensors can improve classification accuracy. However, this study highlights the need for identifying optimal combinations of satellite data and aggregation parameters in order to match the accuracy of manually selected and processed image composites.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [22] Tracking changes in coastal land cover in the Yellow Sea, East Asia, using Sentinel-1 and Sentinel-2 time-series images and Google Earth Engine
    Liu, Yongchao
    Xiao, Xiangming
    Li, Jialin
    Wang, Xinxin
    Chen, Bangqian
    Sun, Chao
    Wang, Jie
    Tian, Peng
    Zhang, Haitao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 : 429 - 444
  • [23] Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine
    Stromann, Oliver
    Nascetti, Andrea
    Yousif, Osama
    Ban, Yifang
    REMOTE SENSING, 2020, 12 (01)
  • [24] Removing cloud cover interference from Sentinel-2 imagery in Google Earth Engine by fusing Sentinel-1 SAR data with a CNN model
    Zhang, Xiuhua
    Qiu, Zhaoxin
    Peng, Cong
    Ye, Peng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (01) : 132 - 147
  • [25] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [26] Mapping Paddy Cropland in Guntur District using Machine Learning and Google Earth Engine utilizing Images from Sentinel-1 and Sentinel-2
    Nagendram, Pureti Siva
    Satyanarayana, Penke
    Teja, Panduranga Ravi
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (06) : 12427 - 12432
  • [27] Object-Based Informal Settlement Mapping in Google Earth Engine Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Matarira, Dadirai
    Mutanga, Onisimo
    Naidu, Maheshvari
    Vizzari, Marco
    LAND, 2023, 12 (01)
  • [28] Synergistic use of Sentinel-1, Sentinel-2, and Landsat 8 in predicting forest variables
    Fang, Gengsheng
    Xu, Hao
    Yang, Sheng-, I
    Lou, Xiongwei
    Fang, Luming
    ECOLOGICAL INDICATORS, 2023, 151
  • [29] Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification
    De Fioravante, Paolo
    Luti, Tania
    Cavalli, Alice
    Giuliani, Chiara
    Dichicco, Pasquale
    Marchetti, Marco
    Chirici, Gherardo
    Congedo, Luca
    Munafo, Michele
    LAND, 2021, 10 (06)
  • [30] Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine
    Liu, Luo
    Xiao, Xiangming
    Qin, Yuanwei
    Wang, Jie
    Xu, Xinliang
    Hu, Yueming
    Qiao, Zhi
    REMOTE SENSING OF ENVIRONMENT, 2020, 239