Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine

被引:79
|
作者
Stromann, Oliver [1 ]
Nascetti, Andrea [1 ]
Yousif, Osama [1 ]
Ban, Yifang [1 ]
机构
[1] KTH Royal Inst Technol, Dept Urban Planning & Environm, Div Geoinformat, Teknikringen 10, S-14428 Stockholm, Sweden
关键词
EO big data; SAR; MSI; Google Earth Engine; object-based classification; HIGH-RESOLUTION SAR; REMOTE-SENSING DATA; URBAN AREAS; IMAGE CLASSIFICATION; DATA FUSION; TEXTURE; SVM; ENVIRONMENTS; PCA;
D O I
10.3390/rs12010076
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping Earth's surface and its rapid changes with remotely sensed data is a crucial task to understand the impact of an increasingly urban world population on the environment. However, the impressive amount of available Earth observation data is only marginally exploited in common classifications. In this study, we use the computational power of Google Earth Engine and Google Cloud Platform to generate an oversized feature set in which we explore feature importance and analyze the influence of dimensionality reduction methods to object-based land cover classification with Support Vector Machines. We propose a methodology to extract the most relevant features and optimize an SVM classifier hyperparameters to achieve higher classification accuracy. The proposed approach is evaluated in two different urban study areas of Stockholm and Beijing. Despite different training set sizes in the two study sites, the averaged feature importance ranking showed similar results for the top-ranking features. In particular, Sentinel-2 NDVI, NDWI, and Sentinel-1 VV temporal means are the highest ranked features and the experiment results strongly indicated that the fusion of these features improved the separability between urban land cover and land use classes. Overall classification accuracies of 94% and 93% were achieved in Stockholm and Beijing study sites, respectively. The test demonstrated the viability of the methodology in a cloud-computing environment to incorporate dimensionality reduction as a key step in the land cover classification process, which we consider essential for the exploitation of the growing Earth observation big data. To encourage further research and development of reliable workflows, we share our datasets and publish the developed Google Earth Engine and Python scripts as free and open-source software.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine
    Vizzari, Marco
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [2] COMBINING SENTINEL-1 AND SENTINEL-2 TIME SERIES VIA RNN FOR OBJECT-BASED LAND COVER CLASSIFICATION
    Ienco, Dino
    Gaetano, Raffaele
    Ose, Roberto Interdonato Kenji
    Dinh Ho Tong Minh
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4881 - 4884
  • [3] Object-Based Informal Settlement Mapping in Google Earth Engine Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Matarira, Dadirai
    Mutanga, Onisimo
    Naidu, Maheshvari
    Vizzari, Marco
    [J]. LAND, 2023, 12 (01)
  • [4] Crop classification in Google Earth Engine: leveraging Sentinel-1, Sentinel-2, European CAP data, and object-based machine-learning approaches
    Vizzari, Marco
    Lesti, Giacomo
    Acharki, Siham
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [5] Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia
    Eisfelder, Christina
    Boemke, Bruno
    Gessner, Ursula
    Sogno, Patrick
    Alemu, Genanaw
    Hailu, Rahel
    Mesmer, Christian
    Huth, Juliane
    [J]. REMOTE SENSING, 2024, 16 (05)
  • [6] Uncertainty Analysis of Object-Based Land-Cover Classification Using Sentinel-2 Time-Series Data
    Ma, Lei
    Schmitt, Michael
    Zhu, Xiaoxiang
    [J]. REMOTE SENSING, 2020, 12 (22) : 1 - 17
  • [7] Tracking changes in coastal land cover in the Yellow Sea, East Asia, using Sentinel-1 and Sentinel-2 time-series images and Google Earth Engine
    Liu, Yongchao
    Xiao, Xiangming
    Li, Jialin
    Wang, Xinxin
    Chen, Bangqian
    Sun, Chao
    Wang, Jie
    Tian, Peng
    Zhang, Haitao
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 : 429 - 444
  • [8] OBJECT-BASED CLASSIFICATION OF SENTINEL-2 IMAGERY USING COMPACT TEXTURE UNIT DESCRIPTORS THROUGH GOOGLE EARTH ENGINE
    Djerriri, Khelifa
    Safia, Abdelmounaime
    Adjoudj, Reda
    [J]. 2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 105 - 108
  • [9] Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine
    Luo, Chong
    Qi, Beisong
    Liu, Huanjun
    Guo, Dong
    Lu, Lvping
    Fu, Qiang
    Shao, Yiqun
    [J]. REMOTE SENSING, 2021, 13 (04) : 1 - 19
  • [10] Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine
    Carrasco, Luis
    O'Neil, Aneurin W.
    Morton, R. Daniel
    Rowland, Clare S.
    [J]. REMOTE SENSING, 2019, 11 (03)