Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine

被引:143
|
作者
Carrasco, Luis [1 ,2 ,3 ]
O'Neil, Aneurin W. [1 ]
Morton, R. Daniel [1 ]
Rowland, Clare S. [1 ]
机构
[1] Lancaster Environm Ctr, NERC Ctr Ecol & Hydrol, Lib Ave, Lancaster LA1 4AP, England
[2] Univ Tennessee, Natl Inst Math & Biol Synth, 1122 Volunteer Blvd, Knoxville, TN 37996 USA
[3] Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA
关键词
cloud computing; cloud masking; data fusion; gap filling; radar; supervised classifications; REMOTELY-SENSED DATA; TIME-SERIES; CROP CLASSIFICATION; CLOUD; TM; DIFFERENCE; ALGORITHM; FUSION; IMAGES; FOREST;
D O I
10.3390/rs11030288
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land cover mapping of large areas is challenging due to the significant volume of satellite data to acquire and process, as well as the lack of spatial continuity due to cloud cover. Temporal aggregation-the use of metrics (i.e., mean or median) derived from satellite data over a period of time-is an approach that benefits from recent increases in the frequency of free satellite data acquisition and cloud-computing power. This enables the efficient use of multi-temporal data and the exploitation of cloud-gap filling techniques for land cover mapping. Here, we provide the first formal comparison of the accuracy between land cover maps created with temporal aggregation of Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8 (L8) data from one-year and test whether this method matches the accuracy of traditional approaches. Thirty-two datasets were created for Wales by applying automated cloud-masking and temporally aggregating data over different time intervals, using Google Earth Engine. Manually processed S2 data was used for comparison using a traditional two-date composite approach. Supervised classifications were created, and their accuracy was assessed using field-based data. Temporal aggregation only matched the accuracy of the traditional two-date composite approach (77.9%) when an optimal combination of optical and radar data was used (76.5%). Combined datasets (S1, S2 or S1, S2, and L8) outperformed single-sensor datasets, while datasets based on spectral indices obtained the lowest levels of accuracy. The analysis of cloud cover showed that to ensure at least one cloud-free pixel per time interval, a maximum of two intervals per year for temporal aggregation were possible with L8, while three or four intervals could be used for S2. This study demonstrates that temporal aggregation is a promising tool for integrating large amounts of data in an efficient way and that it can compensate for the lower quality of automatic image selection and cloud masking. It also shows that combining data from different sensors can improve classification accuracy. However, this study highlights the need for identifying optimal combinations of satellite data and aggregation parameters in order to match the accuracy of manually selected and processed image composites.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine
    Vizzari, Marco
    REMOTE SENSING, 2022, 14 (11)
  • [2] Mapping Photovoltaic Panels in Coastal China Using Sentinel-1 and Sentinel-2 Images and Google Earth Engine
    Zhang, Haitao
    Tian, Peng
    Zhong, Jie
    Liu, Yongchao
    Li, Jialin
    REMOTE SENSING, 2023, 15 (15)
  • [3] An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine
    Lee, Jihyun
    Kim, Kwangseob
    Lee, Kiwon
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (05) : 599 - 608
  • [4] Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
    Berra, Elias Fernando
    Fontana, Denise Cybis
    Yin, Feng
    Breunig, Fabio Marcelo
    REMOTE SENSING, 2024, 16 (15)
  • [5] Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods
    Nasiri, Vahid
    Deljouei, Azade
    Moradi, Fardin
    Sadeghi, Seyed Mohammad Moein
    Borz, Stelian Alexandru
    REMOTE SENSING, 2022, 14 (09)
  • [6] Assessment of Sentinel-1 and Sentinel-2 Data for Landslides Identification using Google Earth Engine
    Nugroho, Ferman Setia
    Danoedoro, Projo
    Arjasakusuma, Sanjiwana
    Candra, Danang Surya
    Bayanuddin, Athar Abdurrahman
    Samodra, Guruh
    2021 7TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2021,
  • [7] Mapping Winter Wheat with Combinations of Temporally Aggregated Sentinel-2 and Landsat-8 Data in Shandong Province, China
    Xu, Feng
    Li, Zhaofu
    Zhang, Shuyu
    Huang, Naitao
    Quan, Zongyao
    Zhang, Wenmin
    Liu, Xiaojun
    Jiang, Xiaosan
    Pan, Jianjun
    Prishchepov, Alexander V.
    REMOTE SENSING, 2020, 12 (12)
  • [8] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [9] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    Chong, Luo
    Huan-jun, Liu
    Lu-ping, Lu
    Zheng-rong, Liu
    Fan-chang, Kong
    Xin-le, Zhang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (07) : 1944 - 1957
  • [10] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    LUO Chong
    LIU Huan-jun
    LU Lü-ping
    LIU Zheng-rong
    KONG Fan-chang
    ZHANG Xin-le
    JournalofIntegrativeAgriculture, 2021, 20 (07) : 1944 - 1957