Fast threshold selection algorithm for segmentation of synthetic aperture radar images

被引:13
|
作者
Ranjani, J. Jennifer [1 ]
Thiruvengadam, S. J. [2 ]
机构
[1] Thiagarajar Coll Engn, Dept Informat Technol, Madurai 625015, Tamil Nadu, India
[2] Thiagarajar Coll Engn, Dept Elect & Commun Engn, Madurai 625015, Tamil Nadu, India
来源
IET RADAR SONAR AND NAVIGATION | 2012年 / 6卷 / 08期
关键词
POLARIMETRIC SAR IMAGES; MARKOV RANDOM-FIELD; DETECTOR; MODEL;
D O I
10.1049/iet-rsn.2011.0341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic detection of disjoint regions in synthetic aperture radar (SAR) images for applications requiring localisation and identification of objects is complicated by the nature of the speckle. A multi-level ratio of exponential weighted averages (MROEWA) together with a fast algorithm for optimal threshold selection is proposed for SAR segmentation. A nonparametric and unsupervised principle using the grey level histogram is utilised for producing the regions that are homogenous. An optimal threshold is automatically selected by maximising the separability of the classes in grey level by incorporating a simple search strategy. Experimental results on both synthetic and real images verify the effectiveness of the proposed method. It is validated that the proposed method outperforms greatly by reducing the number of arithmetic operations required for computing the optimal threshold.
引用
收藏
页码:788 / 795
页数:8
相关论文
共 50 条
  • [21] A Fast Level Set Method for Synthetic Aperture Radar Ocean Image Segmentation
    Huang, Xiaoxia
    Huang, Bo
    Li, Hongga
    [J]. SENSORS, 2009, 9 (02) : 814 - 829
  • [22] A reconstruction algorithm with Bayesian compressive sensing for synthetic aperture radar images
    Hou, Xingsong
    Zhang, Lan
    Xiao, Lin
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2013, 47 (08): : 74 - 79
  • [23] Automatic algorithm for inverse synthetic aperture radar images recognition and classification
    Zeljkovic, V.
    Li, Q.
    Vincelette, R.
    Tameze, C.
    Liu, F.
    [J]. IET RADAR SONAR AND NAVIGATION, 2010, 4 (01): : 96 - 109
  • [24] Triplet Markov fields with edge location for fast unsupervised multi-class segmentation of synthetic aperture radar images
    Gan, L.
    Wu, Y.
    Liu, M.
    Zhang, P.
    Ji, H.
    Wang, F.
    [J]. IET IMAGE PROCESSING, 2012, 6 (07) : 831 - 838
  • [25] Segmentation of polarimetric synthetic aperture radar data
    Rignot, Eric
    Chellappa, Rama
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1992, 1 (03) : 281 - 300
  • [26] A Butterfly Algorithm for Synthetic Aperture Radar
    Demanet, Laurent
    Ferrara, Matthew
    Maxwell, Nicholas
    Poulson, Jack
    Ying, Lexing
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [27] Computationally Efficient FBP-type Direct Segmentation of Synthetic Aperture Radar Images
    Yanik, H. Cagri
    Li, Zhengmin
    Yazici, Birsen
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [28] A Textural-Contextual Model for Unsupervised Segmentation of Multipolarization Synthetic Aperture Radar Images
    Akbari, Vahid
    Doulgeris, Anthony P.
    Moser, Gabriele
    Eltoft, Torbjorn
    Anfinsen, Stian N.
    Serpico, Sebastiano B.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04): : 2442 - 2453
  • [29] Leveraging Mixed Data Sources for Enhanced Road Segmentation in Synthetic Aperture Radar Images
    Lan, Tian
    He, Shuting
    Qing, Yuanyuan
    Wen, Bihan
    [J]. REMOTE SENSING, 2024, 16 (16)
  • [30] Evaluation of a new wavelet based compression algorithm for synthetic aperture radar images
    Tian, J
    Guo, HT
    Wells, RO
    Burrus, CS
    Odegard, JE
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY III, 1996, 2757 : 421 - 430