Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals

被引:47
|
作者
Beke, David [1 ,2 ]
Szekrenyes, Zsolt [1 ]
Czigany, Zsolt [3 ]
Kamaras, Katalin [1 ]
Gali, Adam [1 ,4 ]
机构
[1] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, H-1111 Budapest, Hungary
[3] Hungarian Acad Sci, Energy Res Ctr, Inst Tech Phys & Mat Sci, H-1121 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Dept Atom Phys, H-1111 Budapest, Hungary
关键词
ROOM-TEMPERATURE; COHERENT CONTROL; DOTS; SURFACE; PHOTOLUMINESCENCE; FABRICATION; SPINS; STATE; FILMS;
D O I
10.1039/c5nr01204j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular-sized colloid silicon carbide (SiC) nanoparticles are very promising candidates to realize bioinert non-perturbative fluorescent nanoparticles for in vivo bioimaging. Furthermore, SiC nanoparticles with engineered vacancy-related emission centres may realize magneto-optical probes operating at nanoscale resolution. Understanding the nature of molecular-sized SiC nanoparticle emission is essential for further applications. Here we report an efficient and simple method to produce a relatively narrow size distribution of water soluble molecular-sized SiC nanoparticles. The tight control of their size distribution makes it possible to demonstrate a switching mechanism in the luminescence correlated with particle size. We show that molecular-sized SiC nanoparticles of 1-3 nm show a relatively strong and broad surface related luminescence whilst the larger ones exhibit a relatively weak band edge and structural defect luminescence with no evidence of quantum confinement effect.
引用
收藏
页码:10982 / 10988
页数:7
相关论文
共 50 条
  • [21] Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement
    Ledoux, G
    Gong, J
    Huisken, F
    Guillois, O
    Reynaud, C
    APPLIED PHYSICS LETTERS, 2002, 80 (25) : 4834 - 4836
  • [22] Quantum confinement effect in silicon carbide nanostructures: a first principles study
    Wang, Shengjie
    Zhang, Chunlai
    Wang, Zhiguo
    Zu, Xiaotao
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (06): : 771 - 773
  • [23] Growth of silicon quantum dots by oxidation of the silicon nanocrystals embedded within silicon carbide matrix
    Kole, Arindam
    Chaudhuri, Partha
    AIP ADVANCES, 2014, 4 (10):
  • [24] SILOXENE - CHEMICAL QUANTUM CONFINEMENT DUE TO OXYGEN IN A SILICON MATRIX
    DEAK, P
    ROSENBAUER, M
    STUTZMANN, M
    WEBER, J
    BRANDT, MS
    PHYSICAL REVIEW LETTERS, 1992, 69 (17) : 2531 - 2534
  • [25] Step-like enhancement of luminescence quantum yield of silicon nanocrystals
    D. Timmerman
    J. Valenta
    K. Dohnalová
    W. D. A. M. de Boer
    T. Gregorkiewicz
    Nature Nanotechnology, 2011, 6 : 710 - 713
  • [26] Step-like enhancement of luminescence quantum yield of silicon nanocrystals
    Timmerman, D.
    Valenta, J.
    Dohnalova, K.
    de Boer, W. D. A. M.
    Gregorkiewicz, T.
    NATURE NANOTECHNOLOGY, 2011, 6 (11) : 710 - 713
  • [27] Fluorine-Passivated Silicon Nanocrystals: Surface Chemistry versus Quantum Confinement
    Ma, Yeshi
    Pi, Xiaodong
    Yang, Deren
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (09): : 5401 - 5406
  • [28] Quantum confinement and surface chemistry of 0.8–1.6 nm hydrosilylated silicon nanocrystals
    皮孝东
    王蓉
    杨德仁
    Chinese Physics B, 2014, 23 (07) : 573 - 580
  • [29] Quantum Confinement Effect in Pristine and Oxygen Covered Silicon Nanocrystals with Surface States
    Chakraborty, Sudip
    Rajesh, Ch.
    Mahamuni, Shailaja
    Ghaisas, S. V.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (09) : 1739 - 1743
  • [30] QUANTUM CONFINEMENT IN SIZE-SELECTED, SURFACE-OXIDIZED SILICON NANOCRYSTALS
    WILSON, WL
    SZAJOWSKI, PF
    BRUS, LE
    SCIENCE, 1993, 262 (5137) : 1242 - 1244