Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals

被引:47
|
作者
Beke, David [1 ,2 ]
Szekrenyes, Zsolt [1 ]
Czigany, Zsolt [3 ]
Kamaras, Katalin [1 ]
Gali, Adam [1 ,4 ]
机构
[1] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, H-1111 Budapest, Hungary
[3] Hungarian Acad Sci, Energy Res Ctr, Inst Tech Phys & Mat Sci, H-1121 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Dept Atom Phys, H-1111 Budapest, Hungary
关键词
ROOM-TEMPERATURE; COHERENT CONTROL; DOTS; SURFACE; PHOTOLUMINESCENCE; FABRICATION; SPINS; STATE; FILMS;
D O I
10.1039/c5nr01204j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular-sized colloid silicon carbide (SiC) nanoparticles are very promising candidates to realize bioinert non-perturbative fluorescent nanoparticles for in vivo bioimaging. Furthermore, SiC nanoparticles with engineered vacancy-related emission centres may realize magneto-optical probes operating at nanoscale resolution. Understanding the nature of molecular-sized SiC nanoparticle emission is essential for further applications. Here we report an efficient and simple method to produce a relatively narrow size distribution of water soluble molecular-sized SiC nanoparticles. The tight control of their size distribution makes it possible to demonstrate a switching mechanism in the luminescence correlated with particle size. We show that molecular-sized SiC nanoparticles of 1-3 nm show a relatively strong and broad surface related luminescence whilst the larger ones exhibit a relatively weak band edge and structural defect luminescence with no evidence of quantum confinement effect.
引用
收藏
页码:10982 / 10988
页数:7
相关论文
共 50 条
  • [11] Luminescence due to oxygen induced chemical confinement on a silicon surface
    Deak, P.
    Kostyal, G.
    Rosenbauer, M.
    Materials Science Forum, 1994, 143-4 (pt 3) : 1481 - 1486
  • [12] Twinned silicon and germanium nanocrystals: Formation, stability and quantum confinement
    Yu, Ting
    Pi, Xiaodong
    Ni, Zhenyi
    Zhang, Hui
    Yang, Deren
    AIP ADVANCES, 2015, 5 (03):
  • [13] Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films
    Kim, TY
    Park, NM
    Kim, KH
    Sung, GY
    Ok, YW
    Seong, TY
    Choi, CJ
    APPLIED PHYSICS LETTERS, 2004, 85 (22) : 5355 - 5357
  • [14] Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters
    Trwoga, PF
    Kenyon, AJ
    Pitt, CW
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (07) : 3789 - 3794
  • [15] Quantum confinement in nanoscale silicon: The correlation of size with bandgap and luminescence
    von Behren, J
    van Buuren, T
    Zacharias, M
    Chimowitz, EH
    Fauchet, PM
    SOLID STATE COMMUNICATIONS, 1998, 105 (05) : 317 - 322
  • [16] Luminescence of porous silica glasses with quantum sized silicon domains
    Roizin, YO
    AlexeevPopov, A
    Gevelyuk, SA
    Savin, DP
    Mugenski, E
    Sokolska, I
    RysiakiewiczPasek, E
    Marczuk, K
    PHYSICS AND CHEMISTRY OF GLASSES, 1996, 37 (05): : 196 - 200
  • [17] Controlled surface for enhanced luminescence quantum yields of silicon nanocrystals
    Shirahata N.
    Sakka Y.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66 (04): : 145 - 157
  • [18] Observation of dark exciton luminescence from ZnO nanocrystals in the quantum confinement regime
    Yamamoto, Sekika
    Mishina, Tomobumi
    PHYSICAL REVIEW B, 2011, 83 (16)
  • [19] Enhanced quantum confinement in tensile-strained silicon nanocrystals embedded in silicon nitride
    Cho, Chang-Hee
    Kang, Jang-Won
    Park, Il-Kyu
    Park, Seong-Ju
    CURRENT APPLIED PHYSICS, 2017, 17 (12) : 1616 - 1621
  • [20] THE ROLE OF QUANTUM CONFINEMENT AND CRYSTALLINE STRUCTURE IN EXCITONIC LIFETIME OF SILICON NANOCRYSTALS
    Borrero, L.
    Nunes, L. A. O.
    Andreeta, M. R. B.
    Pusep, Yu. A.
    Guimaraes, F. E. G.
    Wojcik, J.
    Mascher, P.
    Comedi, D.
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210