Multiple Instance Learning for Benign vs. Malignant Classification of Lung Nodules in CT Scans

被引:0
|
作者
Safta, Wiem [1 ]
Frigui, Hichem [1 ]
机构
[1] Univ Louisville, Comp Engn & Comp Sci Dept, Louisville, KY 40292 USA
关键词
MIL; lung cancer; CT images; ROI; GLCM; LBP; COMPUTER-AIDED DIAGNOSIS; CANCER;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple Instance Learning (MIL) is used to classify nodules as malignant or benign on 275 benign cases and 96 malignant samples from the publicly available Lung Image Database Consortium Image Collection (LIDC-IDRI) for Computer Aided Diagnosis without predefined Regions of Interest (ROIs) from lung cancer screening thoracic CT scans. By fusing the results of two texture features based on the Gray Level Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP), a classification was performed over 5 fold cross validation using Support Vector Machines for Multiple-Instance Learning (MI-SVM) classifier. The resulting average Area Under Curve, Specificity, Sensitivity, and Accuracy were: 0.9696, 0.9855, 0.6979 and 0.9111 respectively.
引用
收藏
页码:490 / 494
页数:5
相关论文
共 50 条
  • [41] Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance
    de Sousa Costa, Robherson Wector
    Franca da Silva, Giovanni Lucca
    de Carvalho Filho, Antonio Oseas
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (11) : 2125 - 2136
  • [42] Squeeze-and-Excitation Convolutional Neural Network for Classification of Malignant and Benign Lung Nodules
    Chen, Ying
    Du, Weiwei
    Duan, Xiaojie
    Ma, Yanhe
    Zhang, Hong
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (02) : 153 - 158
  • [43] Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance
    Robherson Wector de Sousa Costa
    Giovanni Lucca França da Silva
    Antonio Oseas de Carvalho Filho
    Aristófanes Corrêa Silva
    Anselmo Cardoso de Paiva
    Marcelo Gattass
    [J]. Medical & Biological Engineering & Computing, 2018, 56 : 2125 - 2136
  • [44] Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
    Lv, Enhui
    Liu, Wenfeng
    Wen, Pengbo
    Kang, Xingxing
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [45] Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning
    Ashraf, Syed Faaz
    Yin, Ke
    Meng, Cindy X.
    Wang, Qi
    Wang, Qiong
    Pu, Jiantao
    Dhupar, Rajeev
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2022, 163 (04): : 1496 - +
  • [46] Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT
    Uthoff, Johanna
    Stephens, Matthew J.
    Newell, John D.
    Hoffman, Eric A.
    Larson, Jared
    Koehn, Nicholas
    De Stefano, Frank A.
    Lusk, Chrissy M.
    Wenzlaff, Angela S.
    Watza, Donovan
    Neslund-Dudas, Christine
    Carr, Laurie L.
    Lynch, David A.
    Schwartz, Ann G.
    Sieren, Jessica C.
    [J]. MEDICAL PHYSICS, 2019, 46 (07) : 3207 - 3216
  • [47] The classification of benign and malignant lung nodules based on CT radiomics: a systematic review, quality score assessment, and meta-analysis
    Zhu, Fandong
    Yang, Chen
    Zou, Jiajun
    Ma, Weili
    Wei, Yuguo
    Zhao, Zhenhua
    [J]. ACTA RADIOLOGICA, 2023, 64 (12) : 3074 - 3084
  • [48] Holographic location of nodules in mammograms and lung CT scans
    Gomez-Gonzalez, E
    Cano-Rodriguez, AJ
    Risquete-Garcia, R
    Gimeno-Domenech, F
    De la Puerta-Quesada, A
    Gonzalez-Aranda, J
    [J]. RADIOLOGY, 2000, 217 : 436 - 436
  • [49] Detection of Lung Nodules in CT Scans Based on Unsupervised Feature Learning and Fuzzy Inference
    Akbarizadeh, Gholamreza
    Moghaddam, Amal Eisapour
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (02) : 477 - 483
  • [50] Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning
    Yang, Min
    Yee, Austin Lin
    Yu, Jiafeng
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (02)