Squeeze-and-Excitation Convolutional Neural Network for Classification of Malignant and Benign Lung Nodules

被引:7
|
作者
Chen, Ying [1 ]
Du, Weiwei [2 ]
Duan, Xiaojie [1 ]
Ma, Yanhe [3 ]
Zhang, Hong [3 ]
机构
[1] Tiangong Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[2] Kyoto Inst Technol, Dept Informat & Human Sci, Kyoto, Japan
[3] Tianjin Chest Hosp, Tianjin, Peoples R China
关键词
squeeze-and-excitation convolutional network; classify; lung nodules; the LIDC-IDRI database;
D O I
10.12720/jait.12.2.153-158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer is the world's highest morbidity and mortality cancer, which seriously threatens the life and health of the public. Early detection and diagnosis of lung nodules is an important prerequisite for lung cancer prevention and diagnosis. This paper designs a new structure which is a Squeeze-and-Excitation Convolutional Neural Network. Experimental results show that SE-CNN can recognize the benign and malignant lung nodules. SE-CNN is more effective than CNN for classification of benign and malignant lung nodules.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 50 条
  • [1] Research on classification of benign and malignant lung nodules based on three-dimensional multi-view squeeze-and-excitation convolutional neural network
    Yang, Yang
    Li, Xiaoqin
    Han, Zhenbo
    Fu, Jipeng
    Gao, Bin
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2022, 39 (03): : 452 - 461
  • [2] 3D multi-view squeeze-and-excitation convolutional neural network for lung nodule classification
    Yang, Yang
    Li, Xiaoqin
    Fu, Jipeng
    Han, Zhenbo
    Gao, Bin
    [J]. MEDICAL PHYSICS, 2023, 50 (03) : 1905 - 1916
  • [3] Biometric Fish Classification of Temperate Species Using Convolutional Neural Network with Squeeze-and-Excitation
    Olsvik, Erlend
    Trinh, Christian M. D.
    Knausgard, Kristian Muri
    Wiklund, Arne
    Sordalen, Tonje Knutsen
    Kleiven, Alf Ring
    Jiao, Lei
    Goodwin, Morten
    [J]. ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: FROM THEORY TO PRACTICE, 2019, 11606 : 89 - 101
  • [4] Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations
    Zhang, Guobin
    Yang, Zhiyong
    Gong, Li
    Jiang, Shan
    Wang, Lu
    Zhang, Hongyun
    [J]. RADIOLOGIA MEDICA, 2020, 125 (04): : 374 - 383
  • [5] Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations
    Guobin Zhang
    Zhiyong Yang
    Li Gong
    Shan Jiang
    Lu Wang
    Hongyun Zhang
    [J]. La radiologia medica, 2020, 125 : 374 - 383
  • [6] Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
    Lu, Zhenzhen
    Miao, Jingpeng
    Dong, Jingran
    Zhu, Shuyuan
    Wu, Penghan
    Wang, Xiaobing
    Feng, Jihong
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (01):
  • [7] Image Steganalysis via Diverse Filters and Squeeze-and-Excitation Convolutional Neural Network
    Liu, Feng
    Zhou, Xuan
    Yan, Xuehu
    Lu, Yuliang
    Wang, Shudong
    [J]. MATHEMATICS, 2021, 9 (02) : 1 - 13
  • [9] Convolutional squeeze-and-excitation network for ECG arrhythmia detection
    Ge, Rongjun
    Shen, Tengfei
    Zhou, Ying
    Liu, Chengyu
    Zhang, Libo
    Yang, Benqiang
    Yan, Ying
    Coatrieux, Jean-Louis
    Chen, Yang
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 121
  • [10] Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
    Lv, Enhui
    Liu, Wenfeng
    Wen, Pengbo
    Kang, Xingxing
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021