Prospects for bismuth nanowires as thermoelectrics

被引:10
|
作者
Dresselhaus, MS [1 ]
Zhang, Z [1 ]
Sun, X [1 ]
Ying, JY [1 ]
Heremans, J [1 ]
Dresselhaus, G [1 ]
Chen, G [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1557/PROC-545-215
中图分类号
O414.1 [热力学];
学科分类号
摘要
The small effective mass of Bi, high anisotropy of its Fermi surface, and the high aspect ratio (length/diameter) of Bi nanowires make this an excellent system for studying quantum confinement effects of a one-dimensional (1D) electron gas in relation to electrical conductivity, thermoelectric power, and thermal conductivity. A theoretical model based on the basic electronic band structure of bulk Bi is suitably modified to describe 1D bismuth nanowires and is used to predict the dependence of these transport properties on nanowire diameter, temperature and crystalline orientation of the bismuth nanowires. Experiments have been carried out on ultra-fine single crystal Bi nanowires (10-120 nm diameter) with a packing density as high as 7 x 10(10) wires/cm(2) to test the quantum confinement assumptions of the model and the occurrence of a quantum confinement-induced semimetal-to-semiconductor transition as the wire diameter becomes less than 100 nm. Prospects for the use of bismuth nanowires for thermoelectric applications are discussed.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 50 条
  • [41] Tailoring interfacial states for improved n-type bismuth telluride thermoelectrics
    Luo, Kaiyi
    Chen, Haowen
    Hu, Wenyu
    Qian, Pingping
    Guo, Junbiao
    Deng, Yixiao
    Yang, Lei
    Sun, Qiang
    Liu, Lin
    Cao, Lei
    Qiu, Wenbin
    Tang, Jun
    NANO ENERGY, 2024, 128
  • [42] Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis
    Poehler, Theodore O.
    Katz, Howard E.
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) : 8110 - 8115
  • [43] Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application
    Nozariasbmarz, Amin
    Poudel, Bed
    Li, Wenjie
    Kang, Han Byul
    Zhu, Hangtian
    Priya, Shashank
    ISCIENCE, 2020, 23 (07)
  • [44] Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics
    Markussen, Troels
    Jauho, Antti-Pekka
    Brandbyge, Mads
    PHYSICAL REVIEW LETTERS, 2009, 103 (05)
  • [45] Ultralong ZnO nanowires: Problems and prospects
    Sugavaneshwar, R. P.
    Nanda, Karuna Kar
    MATERIALS EXPRESS, 2013, 3 (03) : 185 - 200
  • [46] Conductance quantization in bismuth nanowires at 4 K
    CostaKramer, JL
    Garcia, N
    Olin, H
    PHYSICAL REVIEW LETTERS, 1997, 78 (26) : 4990 - 4993
  • [47] Recrystallized Arrays of Bismuth Nanowires with Trigonal Orientation
    Limmer, Steven J.
    Yelton, W. Graham
    Erickson, Kristopher J.
    Medlin, Douglas L.
    Siegal, Michael P.
    NANO LETTERS, 2014, 14 (04) : 1927 - 1931
  • [48] Spontaneous growth of bismuth nanowires on a sputter-deposited thin bismuth film
    Caruana, A. J.
    Cropper, M. D.
    Stanley, S. A.
    SURFACE & COATINGS TECHNOLOGY, 2015, 271 : 8 - 12
  • [49] Growth of bismuth nanowires stimulated by Fe islands
    Volkov, V. T.
    Kasumov, A. Yu.
    Kasumov, Yu. A.
    Khodos, I. I.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (11):
  • [50] Compressive Stress Drives Formation of Bismuth Nanowires
    Maxim P. Nikiforov
    MRS Bulletin, 2002, 27 : 943 - 944