Prospects for bismuth nanowires as thermoelectrics

被引:10
|
作者
Dresselhaus, MS [1 ]
Zhang, Z [1 ]
Sun, X [1 ]
Ying, JY [1 ]
Heremans, J [1 ]
Dresselhaus, G [1 ]
Chen, G [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1557/PROC-545-215
中图分类号
O414.1 [热力学];
学科分类号
摘要
The small effective mass of Bi, high anisotropy of its Fermi surface, and the high aspect ratio (length/diameter) of Bi nanowires make this an excellent system for studying quantum confinement effects of a one-dimensional (1D) electron gas in relation to electrical conductivity, thermoelectric power, and thermal conductivity. A theoretical model based on the basic electronic band structure of bulk Bi is suitably modified to describe 1D bismuth nanowires and is used to predict the dependence of these transport properties on nanowire diameter, temperature and crystalline orientation of the bismuth nanowires. Experiments have been carried out on ultra-fine single crystal Bi nanowires (10-120 nm diameter) with a packing density as high as 7 x 10(10) wires/cm(2) to test the quantum confinement assumptions of the model and the occurrence of a quantum confinement-induced semimetal-to-semiconductor transition as the wire diameter becomes less than 100 nm. Prospects for the use of bismuth nanowires for thermoelectric applications are discussed.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 50 条
  • [21] Searching for new thermoelectrics in chemically and structurally complex bismuth chalcogenides
    Chung, DY
    Hogan, T
    Schindler, J
    Iordanidis, L
    Brazis, P
    Kannewurf, CR
    Chen, B
    Uher, C
    Kanatzidis, MG
    THERMOELECTRIC MATERIALS - NEW DIRECTIONS AND APPROACHES, 1997, 478 : 333 - 344
  • [22] Prospects for bismuth nanowire arrays
    Dresselhaus, MS
    Zhang, ZB
    Ying, JY
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U302 - U302
  • [23] Hot pressed pellets of thallium doped bismuth telluride alloys for thermoelectrics
    Gupta, Raj K.
    Puri, Nidhi
    Mehra, N. C.
    Mahapatro, Ajit K.
    Tandon, Ram P.
    INTEGRATED FERROELECTRICS, 2017, 184 (01) : 32 - 37
  • [24] Strong and efficient bismuth telluride-based thermoelectrics for Peltier microcoolers
    HuaLu Zhuang
    Bowen Cai
    Yu Pan
    Bin Su
    Yilin Jiang
    Jun Pei
    Fengming Liu
    Haihua Hu
    Jincheng Yu
    JingWei Li
    Zhengqin Wang
    Zhanran Han
    Hezhang Li
    Chao Wang
    JingFeng Li
    National Science Review, 2024, 11 (10) : 331 - 340
  • [25] Strong and efficient bismuth telluride-based thermoelectrics for Peltier microcoolers
    Zhuang, Hua-Lu
    Cai, Bowen
    Pan, Yu
    Su, Bin
    Jiang, Yilin
    Pei, Jun
    Liu, Fengming
    Hu, Haihua
    Yu, Jincheng
    Li, Jing-Wei
    Wang, Zhengqin
    Han, Zhanran
    Li, Hezhang
    Wang, Chao
    Li, Jing-Feng
    NATIONAL SCIENCE REVIEW, 2024, 11 (10)
  • [26] Nano-optics of bismuth nanowires
    Black, MR
    Hagelstein, PL
    Dresselhaus, MS
    QUANTUM CONFINED SEMICONDUCTOR NANOSTRUCTURES, 2003, 737 : 635 - 640
  • [27] Thermal Expansion Behaviors of Bismuth Nanowires
    Tang, C. J.
    Li, G. H.
    Dou, X. C.
    Zhang, Y. X.
    Li, L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (14): : 5422 - 5427
  • [28] Electrodeposition and Characterization of Bismuth Telluride Nanowires
    C. Frantz
    N. Stein
    L. Gravier
    S. Granville
    C. Boulanger
    Journal of Electronic Materials, 2010, 39 : 2043 - 2048
  • [29] Quantum oscillations of resistivity in bismuth nanowires
    Condrea, E.
    Gilewski, A.
    Fizika Nizkikh Temperatur (Kharkov), 2010, 36 (03): : 316 - 320
  • [30] Burnout current density of bismuth nanowires
    Cornelius, T. W.
    Picht, O.
    Mueller, S.
    Neumann, R.
    Voelklein, F.
    Karim, S.
    Duan, J. L.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (10)