Prospects for bismuth nanowires as thermoelectrics

被引:10
|
作者
Dresselhaus, MS [1 ]
Zhang, Z [1 ]
Sun, X [1 ]
Ying, JY [1 ]
Heremans, J [1 ]
Dresselhaus, G [1 ]
Chen, G [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1557/PROC-545-215
中图分类号
O414.1 [热力学];
学科分类号
摘要
The small effective mass of Bi, high anisotropy of its Fermi surface, and the high aspect ratio (length/diameter) of Bi nanowires make this an excellent system for studying quantum confinement effects of a one-dimensional (1D) electron gas in relation to electrical conductivity, thermoelectric power, and thermal conductivity. A theoretical model based on the basic electronic band structure of bulk Bi is suitably modified to describe 1D bismuth nanowires and is used to predict the dependence of these transport properties on nanowire diameter, temperature and crystalline orientation of the bismuth nanowires. Experiments have been carried out on ultra-fine single crystal Bi nanowires (10-120 nm diameter) with a packing density as high as 7 x 10(10) wires/cm(2) to test the quantum confinement assumptions of the model and the occurrence of a quantum confinement-induced semimetal-to-semiconductor transition as the wire diameter becomes less than 100 nm. Prospects for the use of bismuth nanowires for thermoelectric applications are discussed.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 50 条
  • [1] Prospects for bismuth nanowires as thermoelectrics
    Dresselhaus, M.S.
    Zhang, Z.
    Sun, X.
    Ying, J.Y.
    Heremans, J.
    Dresselhaus, G.
    Chen, G.
    Materials Research Society Symposium - Proceedings, 1999, 545 : 215 - 226
  • [2] Thermoelectrics of Nanowires
    Chen, Renkun
    Lee, Jaeho
    Lee, Woochul
    Li, Deyu
    CHEMICAL REVIEWS, 2019, 119 (15) : 9260 - 9302
  • [3] Bismuth nanowire thermoelectrics
    Kim, Jeongmin
    Shim, Wooyoung
    Lee, Wooyoung
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (46) : 11999 - 12013
  • [4] Semiconductor nanowires for thermoelectrics
    Li, Zhen
    Sun, Qiao
    Yao, Xiang Dong
    Zhu, Zhong Hua
    Lu, Gao Qing
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) : 22821 - 22831
  • [5] Complex bismuth chalcogenides as thermoelectrics
    Chung, DY
    Hogan, T
    Schindler, J
    Iordanidis, L
    Brazis, P
    Kannewurf, CR
    Chen, BX
    Uher, C
    Kanatzidis, MG
    PROCEEDINGS ICT'97 - XVI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 1997, : 459 - 462
  • [6] Bismuth, tellurium, and bismuth telluride nanowires
    Yu, H
    Gibbons, PC
    Buhro, WE
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) : 595 - 602
  • [7] Prospects for Improvement in LED Performance Using Thermoelectrics
    Semenyuk, V.
    Dekhtiaruk, R.
    9TH EUROPEAN CONFERENCE ON THERMOELECTRICS (ECT2011), 2012, 1449 : 552 - 555
  • [8] High-performance thermoelectrics based on heterostructure nanowires
    Linkea, Heiner
    Humphrey, Tammy E.
    O'Dwyer, Mark
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 685 - +
  • [9] Polycrystalline bismuth nanowire networks for flexible longitudinal and transverse thermoelectrics
    Piraux, Luc
    Marchal, Nicolas
    Van Velthem, Pascal
    Gomes, Tristan da Camara Santa Clara
    Ferain, Etienne
    Issi, Jean-Paul
    Antohe, Vlad-Andrei
    NANOSCALE, 2023, 15 (33) : 13708 - 13717
  • [10] Universal and Solution-Processable Precursor to Bismuth Chalcogenide Thermoelectrics
    Wang, Robert Y.
    Feser, Joseph P.
    Gu, Xun
    Yu, Kin Man
    Segalman, Rachel A.
    Majumdar, Arun
    Milliron, Delia J.
    Urban, Jeffrey J.
    CHEMISTRY OF MATERIALS, 2010, 22 (06) : 1943 - 1945