Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model

被引:139
|
作者
Schaefer, Kevin [1 ]
Collatz, G. James [2 ]
Tans, Pieter [3 ]
Denning, A. Scott [4 ]
Baker, Ian [4 ]
Berry, Joe [5 ]
Prihodko, Lara [4 ]
Suits, Neil [6 ]
Philpott, Andrew [7 ]
机构
[1] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA
[4] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[5] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[6] Montana State Univ, Dept Biol & Phys Sci, Billings, MT 59101 USA
[7] Natl Weather Serv, Middle Atlantic River Forecast Ctr, State Coll, PA 16803 USA
基金
美国海洋和大气管理局; 美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1029/2007JG000603
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biogeochemical models must include a broad variety of biological and physical processes to test our understanding of the terrestrial carbon cycle and to predict ecosystem biomass and carbon fluxes. We combine the photosynthesis and biophysical calculations in the Simple Biosphere model, Version 2.5 (SiB2.5) with the biogeochemistry from the Carnegie-Ames-Stanford Approach (CASA) model to create SiBCASA, a hybrid capable of estimating terrestrial carbon fluxes and biomass from diurnal to decadal timescales. We add dynamic allocation of Gross Primary Productivity to the growth and maintenance of leaves, roots, and wood and explicit calculation of autotrophic respiration. We prescribe leaf biomass using Leaf Area Index (LAI) derived from remotely sensed Normalized Difference Vegetation Index. Simulated carbon fluxes and biomass are consistent with observations at selected eddy covariance flux towers in the AmeriFlux network. Major sources of error include the steady state assumption for initial pool sizes, the input weather data, and biases in the LAI.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An improved Carnegie-Ames-Stanford Approach model for estimating ecological carbon sequestration in mountain vegetation
    Huang, Xu
    He, Li
    He, Zhengwei
    Nan, Xi
    Lyu, Pengyi
    Ye, Haiyan
    [J]. FRONTIERS IN ECOLOGY AND EVOLUTION, 2022, 10
  • [2] Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model
    Schaefer, Kevin
    Zhang, Tingjun
    Slater, Andrew G.
    Lu, Lixin
    Etringer, Andrew
    Baker, Ian
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
  • [3] Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford approach (CASA) model
    Cao, S.
    Sanchez-Azofeifa, G. A.
    Duran, S. M.
    Calvo-Rodriguez, S.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (07):
  • [4] High temporal and spatial estimation of grass yield by applying an improved Carnegie-Ames-Stanford approach (CASA)-NPP transformation method: A case study of Zhenglan Banner, Inner Mongolia, China
    Sun, Bin
    Qin, Pengyao
    Yue, Wei
    Guo, Ye
    Gao, Zhihai
    Wang, Yan
    Li, Yifu
    Yan, Ziyu
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [5] The role of the terrestrial biosphere in Holocene carbon cycle dynamics
    Beerling, DJ
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2000, 9 (05): : 421 - 429
  • [6] SIMPLE GLOBAL CARBON MODEL - THE ATMOSPHERE-TERRESTRIAL BIOSPHERE-OCEAN INTERACTION
    KWON, OY
    SCHNOOR, JL
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (03) : 295 - 305
  • [7] STRUCTURE OF A GLOBAL AND SEASONAL CARBON EXCHANGE MODEL FOR THE TERRESTRIAL BIOSPHERE - THE FRANKFURT BIOSPHERE MODEL (FBM)
    KINDERMANN, J
    LUDEKE, MKB
    BADECK, FW
    OTTO, RD
    KLAUDIUS, A
    HAGER, C
    WURTH, G
    LANG, T
    DONGES, S
    HABERMEHL, S
    KOHLMAIER, GH
    [J]. WATER AIR AND SOIL POLLUTION, 1993, 70 (1-4): : 675 - 684
  • [8] SENSITIVITY OF THE TERRESTRIAL BIOSPHERE TO CLIMATIC CHANGES - IMPACT ON THE CARBON-CYCLE
    FRIEDLINGSTEIN, P
    MULLER, JF
    BRASSEUR, GP
    [J]. ENVIRONMENTAL POLLUTION, 1994, 83 (1-2) : 143 - 147
  • [9] Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding
    Canadell, JG
    Mooney, HA
    Baldocchi, DD
    Berry, JA
    Ehleringer, JR
    Field, CB
    Gower, ST
    Hollinger, DY
    Hunt, JE
    Jackson, RB
    Running, SW
    Shaver, GR
    Steffen, W
    Trumbore, SE
    Valentini, R
    Bond, BY
    [J]. ECOSYSTEMS, 2000, 3 (02) : 115 - 130
  • [10] Mathematical model of the global carbon cycle in the biosphere
    Tarko, A. M.
    [J]. ZHURNAL OBSHCHEI BIOLOGII, 2010, 71 (01): : 97 - 109