Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model

被引:139
|
作者
Schaefer, Kevin [1 ]
Collatz, G. James [2 ]
Tans, Pieter [3 ]
Denning, A. Scott [4 ]
Baker, Ian [4 ]
Berry, Joe [5 ]
Prihodko, Lara [4 ]
Suits, Neil [6 ]
Philpott, Andrew [7 ]
机构
[1] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA
[4] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[5] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[6] Montana State Univ, Dept Biol & Phys Sci, Billings, MT 59101 USA
[7] Natl Weather Serv, Middle Atlantic River Forecast Ctr, State Coll, PA 16803 USA
基金
美国海洋和大气管理局; 美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1029/2007JG000603
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biogeochemical models must include a broad variety of biological and physical processes to test our understanding of the terrestrial carbon cycle and to predict ecosystem biomass and carbon fluxes. We combine the photosynthesis and biophysical calculations in the Simple Biosphere model, Version 2.5 (SiB2.5) with the biogeochemistry from the Carnegie-Ames-Stanford Approach (CASA) model to create SiBCASA, a hybrid capable of estimating terrestrial carbon fluxes and biomass from diurnal to decadal timescales. We add dynamic allocation of Gross Primary Productivity to the growth and maintenance of leaves, roots, and wood and explicit calculation of autotrophic respiration. We prescribe leaf biomass using Leaf Area Index (LAI) derived from remotely sensed Normalized Difference Vegetation Index. Simulated carbon fluxes and biomass are consistent with observations at selected eddy covariance flux towers in the AmeriFlux network. Major sources of error include the steady state assumption for initial pool sizes, the input weather data, and biases in the LAI.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics
    Foley, JA
    Prentice, IC
    Ramankutty, N
    Levis, S
    Pollard, D
    Sitch, S
    Haxeltine, A
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (04) : 603 - 628
  • [32] Climate change mitigation via sulfate injection to the stratosphere: impact on the global carbon cycle and terrestrial biosphere
    Eliseev A.V.
    [J]. Atmospheric and Oceanic Optics, 2012, 25 (6) : 405 - 413
  • [33] A SIMPLE GLOBAL CARBON-CYCLE MODEL
    KAMIUTO, K
    [J]. ENERGY, 1994, 19 (08) : 825 - 829
  • [34] Quantifying and Reducing Uncertainty in Global Carbon Cycle Predictions: Lessons and Perspectives From 15 Years of Data Assimilation Studies With the ORCHIDEE Terrestrial Biosphere Model
    MacBean, N.
    Bacour, C.
    Raoult, N.
    Bastrikov, V.
    Koffi, E. N.
    Kuppel, S.
    Maignan, F.
    Ottle, C.
    Peaucelle, M.
    Santaren, D.
    Peylin, P.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2022, 36 (07)
  • [35] MODEL CALCULATIONS FOR TERRESTRIAL CARBON CYCLE - CARBON ISOTOPE GEOCHEMISTRY AND EVOLUTION OF PHOTOSYNTHETIC OXYGEN
    JUNGE, CE
    SCHIDLOWSKI, M
    EICHMANN, R
    PIETREK, H
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS AND ATMOSPHERES, 1975, 80 (33): : 4542 - 4552
  • [36] The large influence of climate model bias on terrestrial carbon cycle simulations
    Ahlstrom, Anders
    Schurgers, Guy
    Smith, Benjamin
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (01):
  • [37] Simulating terrestrial carbon fluxes using the new biosphere model "biosphere model integrating eco-physiological and mechanistic approaches using satellite data" (BEAMS)
    Sasai, Takahiro
    Ichii, Kazuhito
    Yamaguchi, Yasushi
    Nemani, Ramakrishna
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2005, 110 (G2)
  • [38] Terrestrial carbon cycle model-data fusion: Progress and challenges
    Li, Xin
    Ma, Hanqing
    Ran, Youhua
    Wang, Xufeng
    Zhu, Gaofeng
    Liu, Feng
    He, Honglin
    Zhang, Zhen
    Huang, Chunlin
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2021, 64 (10) : 1645 - 1657
  • [39] Terrestrial carbon cycle model-data fusion: Progress and challenges
    Xin Li
    Hanqing Ma
    Youhua Ran
    Xufeng Wang
    Gaofeng Zhu
    Feng Liu
    Honglin He
    Zhen Zhang
    Chunlin Huang
    [J]. Science China Earth Sciences, 2021, 64 : 1645 - 1657
  • [40] Terrestrial carbon cycle model-data fusion: Progress and challenges
    Xin LI
    Hanqing MA
    Youhua RAN
    Xufeng WANG
    Gaofeng ZHU
    Feng LIU
    Honglin HE
    Zhen ZHANG
    Chunlin HUANG
    [J]. Science China Earth Sciences, 2021, 64 (10) : 1645 - 1657