Bayesian estimation of multivariate Gaussian Markov random fields with constraint

被引:6
|
作者
MacNab, Ying C. [1 ]
机构
[1] Univ British Columbia, Sch Populat & Publ Hlth, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
deviance information criterion; disease mapping; hierarchical centering; lattice data; multivariate conditional autoregressive models; multivariate Gaussian Markov random fields; positive definiteness constraint; shrinkage estimation; singular value decomposition; spatial confounding; strictly diagonal dominance criterion; RECENT WORK; LINEAR-MODELS; LATTICE DATA; COREGIONALIZATION; FRAMEWORK;
D O I
10.1002/sim.8752
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article concerns with conditionally formulated multivariate Gaussian Markov random fields (MGMRF) for modeling multivariate local dependencies with unknown dependence parameters subject to positivity constraint. In the context of Bayesian hierarchical modeling of lattice data in general and Bayesian disease mapping in particular, analytic and simulation studies provide new insights into various approaches to posterior estimation of dependence parameters under "hard" or "soft" positivity constraint, including the well-known strictly diagonal dominance criterion and options of hierarchical priors. Hierarchical centering is examined as a means to gain computational efficiency in Bayesian estimation of multivariate generalized linear mixed effects models in the presence of spatial confounding and weakly identified model parameters. Simulated data on irregular or regular lattice, and three datasets from the multivariate and spatiotemporal disease mapping literature, are used for illustration. The present investigation also sheds light on the use of deviance information criterion for model comparison, choice, and interpretation in the context of posterior risk predictions judged by borrowing-information and bias-precision tradeoff. The article concludes with a summary discussion and directions of future work. Potential applications of MGMRF in spatial information fusion and image analysis are briefly mentioned.
引用
收藏
页码:4767 / 4788
页数:22
相关论文
共 50 条
  • [21] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667
  • [22] Some links between conditional and coregionalized multivariate Gaussian Markov random fields
    Martinez-Beneito, Miguel A.
    [J]. SPATIAL STATISTICS, 2020, 40
  • [23] Bayesian Stochastic Soil Modeling Framework Using Gaussian Markov Random Fields
    Wang, Hui
    Wang, Xiangrong
    Wellmann, J. Florian
    Liang, Robert Y.
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2018, 4 (02):
  • [24] LEARNING IN GAUSSIAN MARKOV RANDOM FIELDS
    Riedl, Thomas J.
    Singer, Andrew C.
    Choi, Jun Won
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3070 - 3073
  • [25] Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
    Everitt, Richard G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (04) : 940 - 960
  • [26] ML parameter estimation for Markov random fields with applications to Bayesian tomography
    Saquib, SS
    Bouman, CA
    Sauer, K
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (07) : 1029 - 1044
  • [27] Bayesian Estimation of the Entropy of the Multivariate Gaussian
    Srivastava, Santosh
    Gupta, Maya R.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1103 - +
  • [28] A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields
    Chagneau, Pierrette
    Mortier, Frederic
    Picard, Nicolas
    Bacro, Jean-Noel
    [J]. BIOMETRICS, 2011, 67 (01) : 97 - 105
  • [29] The Markov method for optimal nonlinear estimation of gaussian stationary divisible random fields
    Yarlykov, MS
    Shvetsov, VI
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (04): : 442 - 450
  • [30] GENERALIZED METHOD OF MOMENTS APPROACH TO HYPERPARAMETER ESTIMATION FOR GAUSSIAN MARKOV RANDOM FIELDS
    Song, Eunhye
    Dong, Yi
    [J]. 2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1790 - 1801