Fine-tuning of algorithms using fractional experimental designs and local search

被引:241
|
作者
Adenso-Díaz, B
Laguna, M
机构
[1] Univ Oviedo, Escuela Super Ingenieros Ind, Gijon 33204, Spain
[2] Univ Colorado, Leeds Sch Business, Boulder, CO 80309 USA
关键词
D O I
10.1287/opre.1050.0243
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Researchers and practitioners frequently spend more time fine-tuning algorithms than designing and implementing them. This is particularly true when developing heuristics and metaheuristics, where the "right" choice of values for search parameters has a considerable effect on the performance of the procedure. When testing metaheuristics, performance typically is measured considering both the quality of the solutions obtained and the time needed to find them. In this paper, we describe the development of CALIBRA, a procedure that attempts to find the best values for up to five search parameters associated with a procedure under study. Because CALIBRA uses Taguchi's fractional factorial experimental designs coupled with a local search procedure, the best values found are not guaranteed to be optimal. We test CALIBRA on six existing heuristic-based procedures. These experiments show that CALIBRA is able to find parameter values that either match or improve the performance of the procedures resulting from using the parameter values suggested by their developers. The latest version of CALIBRA can be downloaded for free from the website that appears in the online supplement of this paper at http://or.pubs.informs.org/Pages.collect.html.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [31] Air Condition's PID Controller Fine-Tuning Using Artificial Neural Networks and Genetic Algorithms
    Malekabadi, Maryam
    Haghparast, Majid
    Nasiri, Fatemeh
    COMPUTERS, 2018, 7 (02)
  • [32] Fine-Tuning Pre-Trained CodeBERT for Code Search in Smart Contract
    JIN Huan
    LI Qinying
    Wuhan University Journal of Natural Sciences, 2023, 28 (03) : 237 - 245
  • [33] Fine-tuning the structure of glycosaminoglycans in living cells using xylosides
    Persson, Andrea
    Ellervik, Ulf
    Mani, Katrin
    GLYCOBIOLOGY, 2018, 28 (07) : 499 - 511
  • [34] Quantum device fine-tuning using unsupervised embedding learning
    van Esbroeck, N. M.
    Lennon, D. T.
    Moon, H.
    Nguyen, V
    Vigneau, F.
    Camenzind, L. C.
    Yu, L.
    Zumbuehl, D. M.
    Briggs, G. A. D.
    Sejdinovic, D.
    Ares, N.
    NEW JOURNAL OF PHYSICS, 2020, 22 (09):
  • [35] Detection of abnormal fish by image recognition using fine-tuning
    Okawa, Ryusei
    Iwasaki, Nobuo
    Okamoto, Kazuya
    Marsh, David
    ARTIFICIAL LIFE AND ROBOTICS, 2023, 28 (01) : 175 - 180
  • [36] Fine-tuning of macrophage activation using synthetic rocaglate derivatives
    Bidisha Bhattacharya
    Sujoy Chatterjee
    William G. Devine
    Lester Kobzik
    Aaron B. Beeler
    John A. Porco
    Igor Kramnik
    Scientific Reports, 6
  • [37] Fine-tuning gene networks using simple sequence repeats
    Egbert, Robert G.
    Klavins, Eric
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (42) : 16817 - 16822
  • [38] Manipulation of Age Variation Using StyleGAN Inversion and Fine-Tuning
    Yoon, Dongsik
    Kim, Jineui
    Lorant, Vincent
    Kang, Sungku
    IEEE ACCESS, 2023, 11 : 131475 - 131486
  • [39] Fine-tuning of macrophage activation using synthetic rocaglate derivatives
    Bhattacharya, Bidisha
    Chatterjee, Sujoy
    Devine, William G.
    Kobzik, Lester
    Beeler, Aaron B.
    Porco, John A., Jr.
    Kramnik, Igor
    SCIENTIFIC REPORTS, 2016, 6
  • [40] Fine-Tuning a Personalized OpenBioLLM Using Offline Reinforcement Learning
    Shi, Jinsheng
    Yuan, Yuyu
    Wang, Ao
    Nie, Meng
    APPLIED SCIENCES-BASEL, 2025, 15 (05):