Fine-tuning of algorithms using fractional experimental designs and local search

被引:241
|
作者
Adenso-Díaz, B
Laguna, M
机构
[1] Univ Oviedo, Escuela Super Ingenieros Ind, Gijon 33204, Spain
[2] Univ Colorado, Leeds Sch Business, Boulder, CO 80309 USA
关键词
D O I
10.1287/opre.1050.0243
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Researchers and practitioners frequently spend more time fine-tuning algorithms than designing and implementing them. This is particularly true when developing heuristics and metaheuristics, where the "right" choice of values for search parameters has a considerable effect on the performance of the procedure. When testing metaheuristics, performance typically is measured considering both the quality of the solutions obtained and the time needed to find them. In this paper, we describe the development of CALIBRA, a procedure that attempts to find the best values for up to five search parameters associated with a procedure under study. Because CALIBRA uses Taguchi's fractional factorial experimental designs coupled with a local search procedure, the best values found are not guaranteed to be optimal. We test CALIBRA on six existing heuristic-based procedures. These experiments show that CALIBRA is able to find parameter values that either match or improve the performance of the procedures resulting from using the parameter values suggested by their developers. The latest version of CALIBRA can be downloaded for free from the website that appears in the online supplement of this paper at http://or.pubs.informs.org/Pages.collect.html.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [21] AutoPEFT : Automatic Configuration Search for Parameter-Efficient Fine-Tuning
    Zhou, Han
    Wan, Xingchen
    Vulic, Ivan
    Korhonen, Anna
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 525 - 542
  • [22] Robustness Preserving Fine-Tuning Using Neuron Importance
    Li, Guangrui
    Duggal, Rahul
    Singh, Aaditya
    Kundu, Kaustav
    Shuai, Bing
    Wu, Jonathan
    COMPUTER VISION - ECCV 2024, PT XXXVII, 2025, 15095 : 54 - 69
  • [23] Irradiation pneumatic system fine-tuning using accelerometers
    Stopic, Attila
    Bennett, John
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2016, 309 (01) : 145 - 148
  • [24] Fine-Tuning Multiprotein Complexes Using Small Molecules
    Thompson, Andrea D.
    Dugan, Amanda
    Gestwicki, Jason E.
    Mapp, Anna K.
    ACS CHEMICAL BIOLOGY, 2012, 7 (08) : 1311 - 1320
  • [25] Irradiation pneumatic system fine-tuning using accelerometers
    Attila Stopic
    John Bennett
    Journal of Radioanalytical and Nuclear Chemistry, 2016, 309 : 145 - 148
  • [26] Fine-tuning Image Transformers using Learnable Memory
    Sandler, Mark
    Zhmoginov, Andrey
    Vladymyrov, Max
    Jackson, Andrew
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12145 - 12154
  • [27] Fast Fine-Tuning using Curriculum Domain Adaptation
    Shen, Lulan
    Amara, Ibtihel
    Li, Ruofeng
    Meyer, Brett
    Gross, Warren
    Clark, James J.
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 296 - 303
  • [28] Fine-tuning Ligands for catalysis using supramolecular strategies
    Slagt, Vincent F.
    Kaiser, Patrick
    Berkessel, Albrecht
    Kuil, Mark
    Kluwer, Alexander M.
    van Leeuwen, Piet W. N. M.
    Reek, Joost N. H.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2007, (29) : 4653 - 4662
  • [29] Fine-tuning ligand binding, conformation, and properties by local dipole changes
    Kuhn, Bernd
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [30] Fine-tuning the brain: The role of local field potentials in DBS programming
    Siddiqui, Mustafa S.
    Mari, Zoltan
    PARKINSONISM & RELATED DISORDERS, 2024, 125