Fine-tuning of algorithms using fractional experimental designs and local search

被引:241
|
作者
Adenso-Díaz, B
Laguna, M
机构
[1] Univ Oviedo, Escuela Super Ingenieros Ind, Gijon 33204, Spain
[2] Univ Colorado, Leeds Sch Business, Boulder, CO 80309 USA
关键词
D O I
10.1287/opre.1050.0243
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Researchers and practitioners frequently spend more time fine-tuning algorithms than designing and implementing them. This is particularly true when developing heuristics and metaheuristics, where the "right" choice of values for search parameters has a considerable effect on the performance of the procedure. When testing metaheuristics, performance typically is measured considering both the quality of the solutions obtained and the time needed to find them. In this paper, we describe the development of CALIBRA, a procedure that attempts to find the best values for up to five search parameters associated with a procedure under study. Because CALIBRA uses Taguchi's fractional factorial experimental designs coupled with a local search procedure, the best values found are not guaranteed to be optimal. We test CALIBRA on six existing heuristic-based procedures. These experiments show that CALIBRA is able to find parameter values that either match or improve the performance of the procedures resulting from using the parameter values suggested by their developers. The latest version of CALIBRA can be downloaded for free from the website that appears in the online supplement of this paper at http://or.pubs.informs.org/Pages.collect.html.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [1] Fine-tuning the search for microsatellites
    de Ridder, C.
    Kourie, D. G.
    Watson, B. W.
    Fourie, T. R.
    Reyneke, P. V.
    JOURNAL OF DISCRETE ALGORITHMS, 2013, 20 : 21 - 37
  • [2] Using genetic algorithms in fine-tuning of fuzzy logic controller
    Yu, JZ
    Ye, Z
    Guo, C
    1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 597 - 601
  • [3] Fine-Tuning an Algorithm for Semantic Search Using a Similarity Graph
    Stanchev, Lubomir
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2015, 9 (03) : 283 - 306
  • [4] Fine-Tuning Convolutional Neural Networks Using Harmony Search
    Rosa, Gustavo
    Papa, Joao
    Marana, Aparecido
    Scheirer, Walter
    Cox, David
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 683 - 690
  • [5] Fine-tuning Deep Belief Networks using Harmony Search
    Papa, Joao Paulo
    Scheirer, Walter
    Cox, David Daniel
    APPLIED SOFT COMPUTING, 2016, 46 : 875 - 885
  • [6] Exponential Fine-Tuning Harmony Search Algorithm
    Zhang, Lipu
    Shen, Xuewen
    ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (ECC 2021), 2022, 268 : 145 - 154
  • [7] A LOCAL CONTINGENCY ANALYSIS OF THE FINE-TUNING HYPOTHESIS
    SOKOLOV, JL
    DEVELOPMENTAL PSYCHOLOGY, 1993, 29 (06) : 1008 - 1023
  • [8] Stop Search With Acceptable Fine-Tuning in Susy Models
    Cici, Ali
    Un, Cem Salih
    Kirca, Zerrin
    PROCEEDINGS OF THE TURKISH PHYSICAL SOCIETY 32ND INTERNATIONAL PHYSICS CONGRESS (TPS32), 2017, 1815
  • [9] An Experimental Study of Global and Local Search Algorithms in Empirical Performance Tuning
    Balaprakash, Prasanna
    Wild, Stefan M.
    Hovland, Paul D.
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2012, 2013, 7851 : 261 - 269
  • [10] Lazy fine-tuning algorithms for naive Bayesian text classification
    El Hindi, Khalil M.
    Aljulaidan, Reem R.
    AlSalman, Hussien
    APPLIED SOFT COMPUTING, 2020, 96