Fuzzy adaptive Q-learning method with dynamic learning parameters

被引:0
|
作者
Maeda, Y [1 ]
机构
[1] Osaka Electrocommun Univ, Fac Informat Sci & Technol, Neyagawa, Osaka 5728530, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An active search in the reinforcement learning disturbs the learning process when learning proceeds and converges to a partial search area. Therefore, it is important to balance between searching behavior of the unknown knowledge and using behavior of the obtained knowledge. In this research, we propose an adaptive Q-learning method tuning learning parameters of the reinforcement learning by fuzzy rules. We also report some results of artificial ants simulation using this method.
引用
收藏
页码:2778 / 2780
页数:3
相关论文
共 50 条
  • [41] Dynamic fuzzy q-learning control of humanoid robots for automatic gait synthesis
    Zhou, Yi
    Er, Meng Joo
    [J]. International Journal of Fuzzy Systems, 2006, 8 (04) : 190 - 199
  • [42] A Dynamic Fuzzy Q-learning Controller to Improve Power System Transient Stability
    Zhou, Lv
    Swain, Akshya
    Naik, Prem K.
    Nair, Nirmal-Kumar C.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2016,
  • [43] Dynamic Fuzzy Q-Learning for Handover Parameters Optimization in 5G multi-tier networks
    Wu, Jin
    Liu, Jing
    Huang, Zhangpeng
    Zheng, Shuqiang
    [J]. 2015 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2015,
  • [44] Q-Learning with adaptive state segmentation (QLASS)
    Murao, H
    Kitamura, S
    [J]. 1997 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION - CIRA '97, PROCEEDINGS: TOWARDS NEW COMPUTATIONAL PRINCIPLES FOR ROBOTICS AND AUTOMATION, 1997, : 179 - 184
  • [45] Adaptive Estimation Q-learning with Uncertainty and Familiarity
    Gong, Xiaoyu
    Lu, Shuai
    Yu, Jiayu
    Zhu, Sheng
    Li, Zongze
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3750 - 3758
  • [46] Q-learning with adaptive state space construction
    Murao, H
    Kitamura, S
    [J]. LEARNING ROBOTS, PROCEEDINGS, 1998, 1545 : 13 - 28
  • [47] Concurrent Q-learning: Reinforcement learning for dynamic goals and environments
    Ollington, RB
    Vamplew, PW
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2005, 20 (10) : 1037 - 1052
  • [48] Q-LEARNING
    WATKINS, CJCH
    DAYAN, P
    [J]. MACHINE LEARNING, 1992, 8 (3-4) : 279 - 292
  • [49] Self-Learning Fuzzy Logic Controller using Q-Learning
    Kim, Min-Soeng
    Hong, Sun-Gi
    Lee, Ju-Jang
    [J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2000, 4 (05) : 349 - 354
  • [50] Implementation of Fuzzy Q-Learning Based on Modular Fuzzy Model and Parallel Structured Learning
    Watanabe, Toshihiko
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 1338 - 1344