Fuzzy adaptive Q-learning method with dynamic learning parameters

被引:0
|
作者
Maeda, Y [1 ]
机构
[1] Osaka Electrocommun Univ, Fac Informat Sci & Technol, Neyagawa, Osaka 5728530, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An active search in the reinforcement learning disturbs the learning process when learning proceeds and converges to a partial search area. Therefore, it is important to balance between searching behavior of the unknown knowledge and using behavior of the obtained knowledge. In this research, we propose an adaptive Q-learning method tuning learning parameters of the reinforcement learning by fuzzy rules. We also report some results of artificial ants simulation using this method.
引用
收藏
页码:2778 / 2780
页数:3
相关论文
共 50 条
  • [21] Simultaneous control of rigidity and hand tremor by adaptive fuzzy Q-learning
    Faraji, Behnam
    Paghaleh, Saeed Mollahoseini
    Gheisarnejad, Meysam
    Khooban, Mohammad-Hassan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [22] An adaptive architecture for modular Q-learning
    Kohri, T
    Matsubayashi, K
    Tokoro, M
    [J]. IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 820 - 825
  • [23] Adaptive moving average Q-learning
    Tan, Tao
    Xie, Hong
    Xia, Yunni
    Shi, Xiaoyu
    Shang, Mingsheng
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, : 7389 - 7417
  • [24] Q-Learning: A Data Analysis Method for Constructing Adaptive Interventions
    Nahum-Shani, Inbal
    Qian, Min
    Almirall, Daniel
    Pelham, William E.
    Gnagy, Beth
    Fabiano, Gregory A.
    Waxmonsky, James G.
    Yu, Jihnhee
    Murphy, Susan A.
    [J]. PSYCHOLOGICAL METHODS, 2012, 17 (04) : 478 - 494
  • [25] Dynamic neural network control through fuzzy Q-learning algorithms
    Deng, ZD
    Kwok, DP
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 381 - 386
  • [26] Dynamic fuzzy Q-learning control of uncertain systems with applications to humanoids
    Zhou, Y
    Er, MJ
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), VOLS 1AND 2, 2005, : 459 - 464
  • [27] A Novel Deep Q-learning Method for Dynamic Spectrum Access
    Tomovic, S.
    Radusinovic, I
    [J]. 2020 28TH TELECOMMUNICATIONS FORUM (TELFOR), 2020, : 9 - 12
  • [28] Multi-Agent Coordination Method Based on Fuzzy Q-Learning
    Peng, Jun
    Liu, Miao
    Wu, Min
    Zhang, Xiaoyong
    Lin, Kuo-Chi
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5411 - +
  • [29] Adaptive Learning Recommendation Strategy Based on Deep Q-learning
    Tan, Chunxi
    Han, Ruijian
    Ye, Rougang
    Chen, Kani
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2020, 44 (04) : 251 - 266
  • [30] Parameter specification for fuzzy clustering by Q-learning
    Oh, CH
    Ikeda, E
    Honda, K
    Ichihashi, H
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 9 - 12