Periodic orbits of the Lorenz system through perturbation theory

被引:2
|
作者
Palacián, J [1 ]
Yanguas, P [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Spain
来源
关键词
D O I
10.1142/S0218127401003632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different transformations are applied to the Lorenz system with the aim of reducing the initial three-dimensional system into others of dimension two. The symmetries of the linear part of the system are determined by calculating the matrices which commute with the matrix associated to the linear part. These symmetries are extended to the whole system up to an adequate order by using Lie transformations. After the reduction, we formulate the resulting systems using the invariants associated to each reduction. At this step, we calculate for each reduced system the equilibria and their stability. They are in correspondence with the periodic orbits and invariant sets of the initial system, the stability being the same.
引用
收藏
页码:2559 / 2566
页数:8
相关论文
共 50 条
  • [41] Control of the Lorenz system: Destroying the homoclinic orbits
    Alvarez-Ramirez, J
    Solis-Daun, J
    Puebla, H
    PHYSICS LETTERS A, 2005, 338 (02) : 128 - 140
  • [42] HOMOCLINIC ORBITS AND CHAOS IN THE GENERALIZED LORENZ SYSTEM
    Yang, Ting
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (03): : 1097 - 1108
  • [43] PERTURBATION-THEORY FOR PERIODIC-ORBITS IN A CLASS OF INFINITE DIMENSIONAL HAMILTONIAN-SYSTEMS
    ALBANESE, C
    FROHLICH, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) : 193 - 205
  • [44] A database of rigorous and high-precision periodic orbits of the Lorenz model
    Barrio, Roberto
    Dena, Angeles
    Tucker, Warwick
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 194 : 76 - 83
  • [45] Persistence of periodic orbits with sliding or sewing by singular perturbation
    Cardin, Pedro T.
    de Moraes, Janne R.
    da Silva, Paulo R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1166 - 1182
  • [46] Bifurcation structure and periodic orbits of the Lorenz equations in the Prandtl number space
    Lai, CH
    Zhou, CT
    Yu, MY
    MODERN PHYSICS LETTERS B, 1996, 10 (29): : 1431 - 1440
  • [47] Periodic cluster perturbation theory
    Tran, Minh-Tien
    PHYSICAL REVIEW B, 2006, 74 (15)
  • [48] THE TRANSITION TO CHAOS IN AN ASYMMETRIC PERTURBATION OF THE LORENZ SYSTEM
    COX, SM
    PHYSICS LETTERS A, 1990, 144 (6-7) : 325 - 328
  • [49] Periodic orbits in the Rossler system
    Gierzkiewicz, Anna
    Zgliczynski, Piotr
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [50] PERIODIC AND HETEROCLINIC ORBITS FOR A PERIODIC HAMILTONIAN SYSTEM
    RABINOWITZ, PH
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (05): : 331 - 346