Periodic orbits of the Lorenz system through perturbation theory

被引:2
|
作者
Palacián, J [1 ]
Yanguas, P [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Spain
来源
关键词
D O I
10.1142/S0218127401003632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different transformations are applied to the Lorenz system with the aim of reducing the initial three-dimensional system into others of dimension two. The symmetries of the linear part of the system are determined by calculating the matrices which commute with the matrix associated to the linear part. These symmetries are extended to the whole system up to an adequate order by using Lie transformations. After the reduction, we formulate the resulting systems using the invariants associated to each reduction. At this step, we calculate for each reduced system the equilibria and their stability. They are in correspondence with the periodic orbits and invariant sets of the initial system, the stability being the same.
引用
收藏
页码:2559 / 2566
页数:8
相关论文
共 50 条
  • [11] Periodic orbits, Lyapunov vectors, and singular vectors in the Lorenz system
    Trevisan, A
    Pancotti, F
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1998, 55 (03) : 390 - 398
  • [12] Chaos, bifurcations and periodic orbits of the Lorenz-Stenflo system
    Zhou, CT
    Lai, CH
    Yu, MY
    PHYSICA SCRIPTA, 1997, 55 (04) : 394 - 402
  • [13] Similarity signature curves for forming periodic orbits in the Lorenz system
    Li, Jindi
    Yang, Yun
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [14] Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations
    Huang, DB
    PHYSICS LETTERS A, 2003, 309 (3-4) : 248 - 253
  • [15] Unstable periodic orbits in the Lorenz attractor
    Boghosian, Bruce M.
    Brown, Aaron
    Laett, Jonas
    Tang, Hui
    Fazendeiro, Luis M.
    Coveney, Peter V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2345 - 2353
  • [16] Unstable periodic orbits analysis in the generalized Lorenz-type system
    Dong, Chengwei
    Liu, Huihui
    Li, Hantao
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (07):
  • [17] A Family of Periodic Motions to Chaos with Infinite Homoclinic Orbits in the Lorenz System
    Guo, Siyu
    Luo, Albert C. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (14) : 3382 - 3437
  • [18] Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system
    Algaba, A.
    Dominguez-Moreno, M. C.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 328 - 343
  • [19] A Family of Periodic Motions to Chaos with Infinite Homoclinic Orbits in the Lorenz System
    Siyu Guo
    Albert C. J. Luo
    Lobachevskii Journal of Mathematics, 2021, 42 : 3382 - 3437
  • [20] Stability of Periodic Orbits in the Averaging Theory: Applications to Lorenz and Thomas Differential Systems
    Candido, Murilo R.
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (03):