Periodic orbits of the Lorenz system through perturbation theory

被引:2
|
作者
Palacián, J [1 ]
Yanguas, P [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Spain
来源
关键词
D O I
10.1142/S0218127401003632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different transformations are applied to the Lorenz system with the aim of reducing the initial three-dimensional system into others of dimension two. The symmetries of the linear part of the system are determined by calculating the matrices which commute with the matrix associated to the linear part. These symmetries are extended to the whole system up to an adequate order by using Lie transformations. After the reduction, we formulate the resulting systems using the invariants associated to each reduction. At this step, we calculate for each reduced system the equilibria and their stability. They are in correspondence with the periodic orbits and invariant sets of the initial system, the stability being the same.
引用
收藏
页码:2559 / 2566
页数:8
相关论文
共 50 条
  • [1] Resonances of periodic orbits in the Lorenz system
    Antonio Algaba
    Estanislao Gamero
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Nonlinear Dynamics, 2016, 84 : 2111 - 2136
  • [2] Periodic orbits of diffusionless Lorenz system
    Dong Cheng-Wei
    ACTA PHYSICA SINICA, 2018, 67 (24)
  • [3] Short periodic orbits for the Lorenz system
    Galias, Zbigniew
    Tucker, Warwick
    ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, : 285 - 288
  • [4] Superluminal periodic orbits in the Lorenz system
    Algaba, A.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 220 - 232
  • [5] Resonances of periodic orbits in the Lorenz system
    Algaba, Antonio
    Gamero, Estanislao
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    NONLINEAR DYNAMICS, 2016, 84 (04) : 2111 - 2136
  • [6] Topological classification of periodic orbits in Lorenz system
    董成伟
    Chinese Physics B, 2018, 27 (08) : 147 - 153
  • [8] On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system
    Guo, Siyu
    Luo, Albert C. J.
    CHAOS, 2021, 31 (04)
  • [9] Rigorous study of short periodic orbits for the Lorenz system
    Galias, Zbigniew
    Tucker, Warwick
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 764 - +
  • [10] Geometric method for forming periodic orbits in the Lorenz system
    Nicholson, S. B.
    Kim, Eun-jin
    PHYSICA SCRIPTA, 2016, 91 (04)