Mean and autocovariance function estimation near the boundary of stationarity

被引:5
|
作者
Giraitis, Liudas [1 ]
Phillips, Peter C. B. [2 ,3 ,4 ,5 ]
机构
[1] Queen Mary Univ London, London, England
[2] Yale Univ, New Haven, CT 06520 USA
[3] Univ Auckland, Auckland 1, New Zealand
[4] Univ Southampton, Southampton SO9 5NH, Hants, England
[5] Singapore Management Univ, Singapore, Singapore
基金
美国国家科学基金会;
关键词
Asymptotic normality; Integrated periodogram; Linear process; Local to unity; Localizing coefficient; LIMIT THEORY; ASYMPTOTIC THEORY;
D O I
10.1016/j.jeconom.2012.01.020
中图分类号
F [经济];
学科分类号
02 ;
摘要
We analyze the applicability of standard normal asymptotic theory for linear process models near the boundary of stationarity. Limit results are given for estimation of the mean, autocovariance and autocorrelation functions within the broad region of stationarity that includes near boundary cases which vary with the sample size. The rate of consistency and the validity of the normal asymptotic approximation for the corresponding estimators is determined both by the sample size n and a parameter measuring the proximity of the model to the unit root boundary. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 50 条
  • [11] The conditional distance autocovariance function
    Zhang, Qiang
    Pan, Wenliang
    Li, Chengwei
    Wang, Xueqin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1093 - 1114
  • [12] ESTIMATION OF PARAMETERS OF A MULTIVARIATE MOVING AVERAGE MODEL FROM ESTIMATES OF THE INVERSE AUTOCOVARIANCE FUNCTION
    NAKANO, J
    TAGAMI, S
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (01) : 181 - 192
  • [13] Adaptive estimation of a function of a mean vector
    Fox, M
    STATISTICS & PROBABILITY LETTERS, 1997, 33 (02) : 109 - 115
  • [14] The Stationarity of Generalized STAR(2;λ1,λ2) Process Through The Invers of Autocovariance Matrix
    Mukhaiyar, Utriweni
    Pasaribu, Udjianna S.
    Budhi, Wono Setya
    Syuhada, Khreshna
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2012)L: SCIENCE FOR HEALTH, FOOD AND SUSTAINABLE ENERGY, 2014, 1589 : 484 - 487
  • [15] A NOTE ON AUTOCOVARIANCE ESTIMATION IN THE PRESENCE OF DISCRETE SPECTRA
    HOUDRE, C
    KEDEM, B
    STATISTICS & PROBABILITY LETTERS, 1995, 24 (01) : 1 - 8
  • [16] NONNEGATIVE DEFINITENESS OF THE SAMPLE AUTOCOVARIANCE FUNCTION
    MCLEOD, AI
    JIMENEZ, C
    AMERICAN STATISTICIAN, 1984, 38 (04): : 297 - 298
  • [17] A spectral approach to estimate the autocovariance function
    Levy-Leduc, Celine
    Bondon, Pascal
    Reisen, Valderio
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 221 : 281 - 298
  • [18] Saddlepoint approximation for the distribution function near the mean
    Yang, B
    Kolassa, JE
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (04) : 743 - 747
  • [19] Saddlepoint Approximation for the Distribution Function Near the Mean
    Bo Yang
    John E. Kolassa
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 743 - 747
  • [20] The Birth–death Processes with Regular Boundary: Stationarity and Quasi-stationarity
    Wu Jun GAO
    Yong Hua MAO
    Chi ZHANG
    Acta Mathematica Sinica,English Series, 2022, (05) : 890 - 906