The conditional distance autocovariance function

被引:1
|
作者
Zhang, Qiang [1 ]
Pan, Wenliang [1 ]
Li, Chengwei [1 ]
Wang, Xueqin [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Southern China Ctr Stat Sci, Guangzhou, Peoples R China
[2] Univ Sci & Technol China, Sch Management, Int Inst Finance, Dept Stat & Finance, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Conditional distance autocovariance function; conditional distance correlation; nonlinear time series model; PACF;
D O I
10.1002/cjs.11610
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The partial autocorrelation function (PACF) is often used in time series analysis to identify the extent of the lag in an autoregressive model. However, the PACF is only suitable for detecting linear correlations. This article proposes the conditional distance autocovariance function (CDACF), which is zero if and only if measured time series components are conditionally independent. Due to the lack of this property, traditional tools for measuring partial correlations such as the PACF cannot work well for nonlinear sequences. Based on the CDACF, we introduce a tool known as an integrated conditional distance autocovariance function (ICDACF), which can test conditional temporal dependence structures of a sequence and estimate the order of an autoregressive process. Simulation studies reveal that the ICDACF can detect the conditional dependence of nonlinear autoregressive models efficiently while controlling for type-I error rates. Finally, an analysis of a Bitcoin price dataset using the ICDACF demonstrates that our method has considerable advantages over other state-of-the-art methods.
引用
收藏
页码:1093 / 1114
页数:22
相关论文
共 50 条
  • [1] The generalised autocovariance function
    Proietti, Tommaso
    Luati, Alessandra
    [J]. JOURNAL OF ECONOMETRICS, 2015, 186 (01) : 245 - 257
  • [2] Nonparametric autocovariance function estimation
    Hyndman, RJ
    Wand, MP
    [J]. AUSTRALIAN JOURNAL OF STATISTICS, 1997, 39 (03): : 313 - 324
  • [3] Inference for the autocovariance of a functional time series under conditional heteroscedasticity
    Kokoszka, Piotr
    Rice, Gregory
    Shang, Han Lin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 32 - 50
  • [4] A spectral approach to estimate the autocovariance function
    Levy-Leduc, Celine
    Bondon, Pascal
    Reisen, Valderio
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 221 : 281 - 298
  • [5] NONNEGATIVE DEFINITENESS OF THE SAMPLE AUTOCOVARIANCE FUNCTION
    MCLEOD, AI
    JIMENEZ, C
    [J]. AMERICAN STATISTICIAN, 1984, 38 (04): : 297 - 298
  • [6] Autocovariance Function Estimation via Penalized Regression
    Liao, Lina
    Park, Cheolwoo
    Hannig, Jan
    Kang, Kee-Hoon
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) : 1041 - 1056
  • [7] On the asymptotic distribution of the residual autocovariance matrices in the autoregressive conditional multinomial model
    Duchesne, P
    [J]. ECONOMICS LETTERS, 2004, 83 (02) : 193 - 197
  • [8] Minimum distance conditional variance function checking in heteroscedastic regression models
    Samarakoon, Nishantha
    Song, Weixing
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (03) : 579 - 600
  • [9] A Gini Autocovariance Function for Time Series Modelling
    Carcea, Marcel
    Serfling, Robert
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2015, 36 (06) : 817 - 838
  • [10] NONNEGATIVE DEFINITENESS OF THE SAMPLE AUTOCOVARIANCE FUNCTION - REPLY
    MCLEOD, AI
    JIMENEZ, C
    [J]. AMERICAN STATISTICIAN, 1985, 39 (03): : 237 - 238