Stochastic gradient-based particle filtering method for ARX models with nonlinear communication output submodel

被引:1
|
作者
Feng, Jianxia [1 ,2 ]
Lu, Donglei [1 ,2 ]
机构
[1] Nanjing Audit Univ, Jinshen Coll, Nanjing, Jiangsu, Peoples R China
[2] Wuxi Profess Coll Sci & Technol, Wuxi, Jiangsu, Peoples R China
关键词
system identification; stochastic gradient; particle filter; missing outputs; auto regressivee xogenous; ARX model; IDENTIFICATION METHODS; SQUARES ALGORITHM; SYSTEMS; STATE;
D O I
10.1504/IJMIC.2019.099823
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a stochastic gradient-based modified particle filter algorithm for an auto regressivee xogenous (ARX) model with nonlinear communication output submodel. The outputs of the ARX model are transmitted over a nonlinear communication network, while the outputs of the communication network are available. Based on the modified particle filter and the available outputs, the outputs of the ARX model can be computed, and then the unknown parameters can be estimated by the stochastic gradient algorithm. The simulation results demonstrate that the stochastic gradient-based particle filter algorithm is effective.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [21] Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems
    Yawen Mao
    Feng Ding
    Circuits, Systems, and Signal Processing, 2016, 35 : 651 - 667
  • [22] Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems
    Mao, Yawen
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (02) : 651 - 667
  • [23] A New Gradient-based Nonlinear Diffusion Method Applied to Image Denoising
    Zhang, Xiaobo
    Feng, Xiangchu
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2014, : 312 - 315
  • [24] Comparison of stochastic gradient-based optimization techniques for nonlinear satellite image coregistration problem
    Moorthi, S. Manthira
    Sivakumar, R.
    CURRENT SCIENCE, 2018, 114 (10): : 2072 - 2079
  • [25] Stochastic gradient-based hyperbolic orthogonal neural networks for nonlinear dynamic systems identification
    Ahmadi, Ghasem
    JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (03): : 529 - 547
  • [26] A new filter-based stochastic gradient algorithm for dual-rate ARX models
    Chen, Jing
    Liu, Yanjun
    Xu, Ling
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (11) : 1557 - 1568
  • [27] Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique
    Wang, Cheng
    Tang, Tao
    NONLINEAR DYNAMICS, 2014, 77 (03) : 769 - 780
  • [28] Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique
    Cheng Wang
    Tao Tang
    Nonlinear Dynamics, 2014, 77 : 769 - 780
  • [29] Particle filtering based identification for autonomous nonlinear ODE models
    Nordh, Jerker
    Wigren, Torbjorn
    Schon, Thomas B.
    Bernhardsson, Bo
    IFAC PAPERSONLINE, 2015, 48 (28): : 415 - 420
  • [30] Robust Stochastic Gradient-based Adaptive Filtering Algorithms to Realize Compressive Sensing against Impulsive Interferences
    Ye, Chen
    Gui, Guan
    Matsushita, Shinya
    Xu, Li
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1946 - 1951