Stochastic gradient-based particle filtering method for ARX models with nonlinear communication output submodel

被引:1
|
作者
Feng, Jianxia [1 ,2 ]
Lu, Donglei [1 ,2 ]
机构
[1] Nanjing Audit Univ, Jinshen Coll, Nanjing, Jiangsu, Peoples R China
[2] Wuxi Profess Coll Sci & Technol, Wuxi, Jiangsu, Peoples R China
关键词
system identification; stochastic gradient; particle filter; missing outputs; auto regressivee xogenous; ARX model; IDENTIFICATION METHODS; SQUARES ALGORITHM; SYSTEMS; STATE;
D O I
10.1504/IJMIC.2019.099823
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a stochastic gradient-based modified particle filter algorithm for an auto regressivee xogenous (ARX) model with nonlinear communication output submodel. The outputs of the ARX model are transmitted over a nonlinear communication network, while the outputs of the communication network are available. Based on the modified particle filter and the available outputs, the outputs of the ARX model can be computed, and then the unknown parameters can be estimated by the stochastic gradient algorithm. The simulation results demonstrate that the stochastic gradient-based particle filter algorithm is effective.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [11] Aitken-Based Stochastic Gradient Algorithm for ARX Models with Time Delay
    Cheng Wang
    Kaicheng Li
    Circuits, Systems, and Signal Processing, 2019, 38 : 2863 - 2876
  • [12] Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models
    Feng Ding
    Yang Shi
    Tongwen Chen
    Nonlinear Dynamics, 2006, 45 : 31 - 43
  • [13] Aitken-Based Stochastic Gradient Algorithm for ARX Models with Time Delay
    Wang, Cheng
    Li, Kaicheng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (06) : 2863 - 2876
  • [14] Gradient-based identification methods for Hammerstein nonlinear ARMAX models
    Ding, Feng
    Shi, Yang
    Chen, Tongwen
    NONLINEAR DYNAMICS, 2006, 45 (1-2) : 31 - 43
  • [15] A Predictive Gradient-Based Filtering Method for State Estimation of MEMS Micromirrors
    Chai, Guo
    Tan, Yonghong
    Tan, Qingyuan
    Dong, Ruili
    IEEE SENSORS JOURNAL, 2024, 24 (06) : 8337 - 8345
  • [16] Asymptotic analysis of stochastic gradient-based adaptive filtering algorithms with general cost functions
    Sharma, R
    Sethares, WA
    Bucklew, JA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (09) : 2186 - 2194
  • [17] Asymptotic analysis of stochastic gradient-based adaptive filtering algorithms with general cost functions
    Environmental Research Inst of, Michigan, Ann Arbor, United States
    IEEE Trans Signal Process, 9 (2186-2194):
  • [18] Fractional-Based Stochastic Gradient Algorithms for Time-Delayed ARX Models
    Xu, Tianyang
    Chen, Jing
    Pu, Yan
    Guo, Liuxiao
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (04) : 1895 - 1912
  • [19] Fractional-Based Stochastic Gradient Algorithms for Time-Delayed ARX Models
    Tianyang Xu
    Jing Chen
    Yan Pu
    Liuxiao Guo
    Circuits, Systems, and Signal Processing, 2022, 41 : 1895 - 1912
  • [20] Aitken based modified Kalman filtering stochastic gradient algorithm for dual-rate nonlinear models
    Chen, Jing
    Zhang, Yong
    Zhu, Quanmin
    Liu, Yanjun
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (08): : 4732 - 4746