Visualizing Syscalls using Self-organizing Maps for System Intrusion Detection

被引:0
|
作者
Landauer, Max [1 ]
Skopik, Florian [1 ]
Wurzenberger, Markus [1 ]
Hotwagner, Wolfgang [1 ]
Rauber, Andreas [2 ]
机构
[1] Austrian Inst Technol, Ctr Digital Safety & Secur, Vienna, Austria
[2] Vienna Univ Technol, Inst Informat Syst Engn, Vienna, Austria
基金
欧盟地平线“2020”;
关键词
Anomaly Detection; Self-organizing Maps; Syscall Logs; Visualization;
D O I
10.5220/0008918703490360
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Monitoring syscall logs provides a detailed view on almost all processes running on a system. Existing approaches therefore analyze sequences of executed syscall types for system behavior modeling and anomaly detection in cyber security. However, failures and attacks that do not manifest themselves as type sequences violations remain undetected. In this paper we therefore propose to incorporate syscall parameter values with the objective of enriching analysis and detection with execution context information. Our approach thereby first selects and encodes syscall log parameters and then visualizes the resulting high-dimensional data using self-organizing maps to enable complex analysis. We thereby display syscall occurrence frequencies and transitions of consecutively executed syscalls. We employ a sliding window approach to detect changes of the system behavior as anomalies in the SOM mappings. In addition, we use SOMs to cluster aggregated syscall data for classification of normal and anomalous system behavior states. Finally, we validate our approach on a real syscall data set collected from an Apache web server. Our experiments show that all injected attacks are represented as changes in the SOMs, thus enabling visual or semi-automatic anomaly detection.
引用
收藏
页码:349 / 360
页数:12
相关论文
共 50 条
  • [21] Visualizing changes in data collections using growing self-organizing maps
    Nürnberger, A
    Detyniecki, M
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1912 - 1917
  • [22] Visualizing ontology components through self-organizing maps
    Elliman, D
    Pulido, JRG
    [J]. SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, : 434 - 438
  • [23] Cognition Based Self-Organizing Maps (CSOM) for Intrusion Detection in Wireless Networks
    Sunilkumar, G.
    Thriveni, J.
    Venugopal, K. R.
    Patnaik, L. M.
    [J]. 2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [24] Self-organizing maps for outlier detection
    Munoz, A
    Muruzabal, J
    [J]. NEUROCOMPUTING, 1998, 18 (1-3) : 33 - 60
  • [25] Visualizing temporal cluster changes using Relative Density Self-Organizing Maps
    Graham J. Denny
    Peter Williams
    [J]. Knowledge and Information Systems, 2010, 25 : 281 - 302
  • [26] Clustering and visualizing HIV quasispecies using Kohonen's self-organizing maps
    Mora, A. M.
    Merelo, J. J.
    Briones, C.
    Moran, F.
    Laredo, J. L. J.
    [J]. COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 940 - +
  • [27] Visualizing temporal cluster changes using Relative Density Self-Organizing Maps
    Denny
    Williams, Graham J.
    Christen, Peter
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 25 (02) : 281 - 302
  • [28] RF Fingerprinting of LoRa Transmitters Using Machine Learning with Self-Organizing Maps for Cyber Intrusion Detection
    Nair, Manish
    Cappello, Tommaso
    Dang, Shuping
    Kalokidou, Vaia
    Beach, Mark A.
    [J]. 2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, : 491 - 494
  • [29] Visualizing internet search results with adaptive self-organizing maps
    Roussinov, D
    Tolle, K
    Ramsey, M
    McQuaid, M
    Chen, HC
    [J]. SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 336 - 336
  • [30] hSOM: Visualizing Self-Organizing Maps to Accomodate Categorical Data
    Kilgore, Phillip C. S. R.
    Trutschl, Marjan
    Cvek, Urska
    Nam, Hyung W.
    [J]. 2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 644 - 650