hSOM: Visualizing Self-Organizing Maps to Accomodate Categorical Data

被引:0
|
作者
Kilgore, Phillip C. S. R. [1 ]
Trutschl, Marjan [1 ]
Cvek, Urska [1 ]
Nam, Hyung W. [2 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[2] Louisiana State Univ Hlth Shreveport, Dept Pharmacol Toxicolol & Neurosci, Shreveport, LA USA
基金
美国国家卫生研究院;
关键词
self-organizing map; visualization; unsupervised learning; histogram; discrete; neural network; artificial intelligence;
D O I
10.1109/IV51561.2020.00111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kohonen's self-organizing map is an unsupervised machine learning method designed to preserve the topology of its input space. Although this method has been used to efficiently summarize multidimensional data, the visualization of its constituent data has received less attention. We propose a method of addressing the visualization problem by augmenting a classical self-organizing map visualization to include an embedded histogram and evaluate its utility in depicting the self-organizing maps's constituents categorized by a discrete variable.
引用
收藏
页码:644 / 650
页数:7
相关论文
共 50 条
  • [1] An extension of self-organizing maps to categorical data
    Chen, N
    Marques, NC
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3808 : 304 - 313
  • [2] Visualizing changing requirements with self-organizing maps
    Sedbrook, TA
    [J]. JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2004, 45 (02) : 63 - 72
  • [3] Visualizing Demographic Trajectories with Self-Organizing Maps
    André Skupin
    Ron Hagelman
    [J]. GeoInformatica, 2005, 9 : 159 - 179
  • [4] Visualizing demographic trajectories with self-organizing maps
    Skupin, A
    Hagelman, R
    [J]. GEOINFORMATICA, 2005, 9 (02) : 159 - 179
  • [5] Visualizing changes in data collections using growing self-organizing maps
    Nürnberger, A
    Detyniecki, M
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1912 - 1917
  • [6] An Alternative Approach for Binary and Categorical Self-Organizing Maps
    Santana, Alessandra
    Morais, Alessandra
    Quiles, Marcos G.
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2604 - 2610
  • [7] Self-Organizing Maps for Categorical Data: Application to an ISO 9000 Accreditation Assessment
    Costa, J. C. G. D.
    Ichinose, R. M.
    Infantosi, A. F. C.
    Almeida, R. M. V. R.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 1542 - 1545
  • [8] Visualizing ontology components through self-organizing maps
    Elliman, D
    Pulido, JRG
    [J]. SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, : 434 - 438
  • [9] Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data
    Mirshafiee, Vahid
    Harley, Brendan A. C.
    Kraft, Mary L.
    [J]. TISSUE ENGINEERING PART C-METHODS, 2018, 24 (06) : 322 - 330
  • [10] Visualizing high-dimensional input data with growing self-organizing maps
    Delgado, Soledad
    Gonzalo, Consuelo
    Martinez, Estibaliz
    Arquero, Agueda
    [J]. COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 580 - +