Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice

被引:26
|
作者
Wu, Yumao [1 ,2 ,3 ,4 ]
Lu, Ya Yan [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Joint Adv Res Ctr, Jiangsu, Peoples R China
[3] City Univ Hong Kong, Jiangsu, Peoples R China
[4] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
D O I
10.1364/JOSAB.25.001466
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An efficient numerical method is developed for computing the transmission and reflection spectra of finite two-dimensional photonic crystals composed of circular cylinders in a triangular lattice. Our method manipulates a pair of operators defined on a set of curves, and it remains effective when the radius of the cylinders is larger than root 3/4 of the lattice constant-a condition where different arrays of cylinders cannot be separated by planes without intersecting the cylinders. The method is efficient since it never calculates the wave field in the interiors of the (hexagon) unit cells and it approximates the operators by small matrices. This is achieved by using the Dirichlet-to-Neumann (DtN) maps of the unit cells, which map the wave field on the boundaries of the unit cells to its normal derivative. (C) 2008 Optical Society of America
引用
收藏
页码:1466 / 1473
页数:8
相关论文
共 50 条
  • [21] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Gregory Berkolaiko
    Graham Cox
    Jeremy L. Marzuola
    Letters in Mathematical Physics, 2019, 109 : 1611 - 1623
  • [22] On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region
    Ingerman, D
    Morrow, JA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) : 106 - 115
  • [23] GAUGE FREEDOMS IN THE ANISOTROPIC ELASTIC DIRICHLET-TO-NEUMANN MAP
    Ilmavirta, Joonas
    Schluter, Hjordis
    INVERSE PROBLEMS AND IMAGING, 2024,
  • [24] Computing Nodal Deficiency with a Refined Dirichlet-to-Neumann Map
    G. Berkolaiko
    G. Cox
    B. Helffer
    M. P. Sundqvist
    The Journal of Geometric Analysis, 2022, 32
  • [25] The Dirichlet-to-Neumann map for the heat equation on a moving boundary
    De Lillo, S.
    Fokas, A. S.
    INVERSE PROBLEMS, 2007, 23 (04) : 1699 - 1710
  • [26] THE DIRICHLET-TO-NEUMANN MAP FOR SCHRODINGER OPERATORS WITH COMPLEX POTENTIALS
    Behrndt, Jussi
    ter Elst, A. F. M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04): : 661 - 671
  • [27] On determining a Riemannian manifold from the Dirichlet-to-Neumann map
    Lassas, M
    Uhlmann, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05): : 771 - 787
  • [28] Determination of Dirichlet-to-Neumann map for a mixed boundary problem
    Liu, JJ
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) : 843 - 864
  • [29] Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
    Berkolaiko, Gregory
    Cox, Graham
    Marzuola, Jeremy L.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1611 - 1623
  • [30] Computing Nodal Deficiency with a Refined Dirichlet-to-Neumann Map
    Berkolaiko, G.
    Cox, G.
    Helffer, B.
    Sundqvist, M. P.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (10)