Automatic Parcellation of Longitudinal Cortical Surfaces

被引:0
|
作者
Alassaf, Manal H. [1 ,2 ,3 ]
Hahn, James K. [1 ,2 ]
机构
[1] George Washington Univ, Sch Engn & Appl Sci, Dept Comp Sci, Washington, DC 20052 USA
[2] George Washington Univ, Inst Biomed Engn, Washington, DC USA
[3] Taif Univ, Sch Comp & Informat Technol, Dept Comp Sci, At Taif, Saudi Arabia
来源
关键词
Developing Brain; Neonatal Atlas; Brain MRI; Parcellation; Atlas; Brain Parcellation; Longitudinal Parcellation; Spatio-temporal Parcellation; FOLDING PATTERNS; BRAIN; QUANTIFICATION; ATLASES; GROWTH; BIRTH; AGE;
D O I
10.1117/12.2081739
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel automatic method to parcellate the cortical surfaces of the neonatal brain longitudinal atlas at different stages of development. A labeled brain atlas of newborn at 41 weeks gestational age (GA) is used to propagate labels of anatomical regions of interest to an unlabeled spatio-temporal atlas, which provides a dynamic model of brain development at each week between 28-44 GA weeks. First, labels from the cortical volume of the labeled newborn brain are propagated to an age-matched cortical surface from the spatio-temporal atlas. Then, labels are propagated across the cortical surfaces of each week of the spatio-temporal atlas by registering successive cortical surfaces using a novel approach and an energy optimization function. This procedure incorporates local and global, spatial and temporal information when assigning the labels to each surface. The result is a complete parcellation of 17 neonatal brain surfaces of the spatio-temporal atlas with similar points per labels distributions across weeks.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multiscale cortical parcellation based on geodesic distance and hierarchical clustering
    Prieto, Yarelis
    Molina, Joaquin
    Otero, Monica
    Mangin, Jean-Francois
    Hernandez, Cecilia
    El-Deredy, Wael
    Guevara, Pamela
    [J]. 2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [42] A sub plus cortical fMRI-based surface parcellation
    Lewis, John D.
    Bezgin, Gleb
    Fonov, Vladimir S.
    Collins, D. Louis
    Evans, Alan C.
    [J]. HUMAN BRAIN MAPPING, 2022, 43 (02) : 616 - 632
  • [43] Automated parcellation of the cortical surface for computation of regional gyrification indices
    Rettmann, ME
    Han, X
    Prince, JL
    [J]. NEUROIMAGE, 2001, 13 (06) : S230 - S230
  • [44] Cortical parcellation based on structural connectivity: A case for generative models
    Tittgemeyer, Marc
    Rigoux, Lionel
    Knoesche, Thomas R.
    [J]. NEUROIMAGE, 2018, 173 : 592 - 603
  • [45] BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases
    Fournier, Marc
    Lewis, Lindsay B.
    Evans, Alan C.
    [J]. MEDICAL COMPUTER VISION AND BAYESIAN AND GRAPHICAL MODELS FOR BIOMEDICAL IMAGING, 2017, 10081 : 14 - 25
  • [46] Fetal cortical surface atlas parcellation based on growth patterns
    Xia, Jing
    Wang, Fan
    Benkarim, Oualid M.
    Sanroma, Gerard
    Piella, Gemma
    Gonzalez Ballester, Miguel A.
    Hahner, Nadine
    Eixarch, Elisenda
    Zhang, Caiming
    Shen, Dinggang
    Li, Gang
    [J]. HUMAN BRAIN MAPPING, 2019, 40 (13) : 3881 - 3899
  • [47] A Cortical Parcellation Based Analysis of Ventral Premotor Area Connectivity
    Sheets, John R.
    Briggs, Robert G.
    Dadario, Nicholas B.
    Young, Isabella M.
    Bai, Michael Y.
    Poologaindran, Anujan
    Baker, Cordell M.
    Conner, Andrew K.
    Sughrue, Michael E.
    [J]. NEUROLOGICAL RESEARCH, 2021, 43 (07) : 595 - 607
  • [48] Gyral parcellation of the cortical surface using geodesic Voronoi diagrams
    Cachia, A
    Mangin, JF
    Rivière, D
    Papadopoulos-Orfanos, D
    Bloch, I
    Régis, J
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION-MICCAI 2002, PT 1, 2002, 2488 : 427 - 434
  • [49] A joint parcellation and boundary network with multi-rate-shared dilated graph attention for cortical surface parcellation
    Siqi Liu
    Hailiang Ye
    Bing Yang
    Ming Li
    Feilong Cao
    [J]. Medical & Biological Engineering & Computing, 2024, 62 : 537 - 549
  • [50] A Framework for Using Diffusion Weighted Imaging to Improve Cortical Parcellation
    Clarkson, Matthew J.
    Malone, Ian B.
    Modat, Marc
    Leung, Kelvin K.
    Ryan, Natalie
    Alexander, Daniel C.
    Fox, Nick C.
    Ourselin, Sebastien
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I, 2010, 6361 : 534 - +