Fetal cortical surface atlas parcellation based on growth patterns

被引:22
|
作者
Xia, Jing [1 ,2 ,3 ]
Wang, Fan [2 ,3 ]
Benkarim, Oualid M. [4 ]
Sanroma, Gerard [4 ,5 ]
Piella, Gemma [4 ]
Gonzalez Ballester, Miguel A. [4 ,6 ]
Hahner, Nadine [7 ,8 ]
Eixarch, Elisenda [7 ,8 ,9 ]
Zhang, Caiming [10 ,11 ]
Shen, Dinggang [2 ,3 ,12 ]
Li, Gang [2 ,3 ]
机构
[1] Shandong Univ, Dept Comp Sci & Technol, Jinan, Shandong, Peoples R China
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC USA
[4] Univ Pompeu Fabra, BCN Medtech, Barcelona, Spain
[5] German Ctr Neurodegenerat Dis, Bonn, Germany
[6] ICREA, Barcelona, Spain
[7] Univ Barcelona, Fetal I D Fetal Med Res Ctr, Barcelona Ctr Maternal Fetal & Neonatal Med, BCNatal,Hosp Clin, Barcelona, Spain
[8] Univ Barcelona, Hosp St Joan de Deu, Inst Clin Ginecol Obstet & Neonatol, Inst Invest Biomed August Pi i Sunyer, Barcelona, Spain
[9] Ctr Biomed Res Rare Dis CIBER ER, Barcelona, Spain
[10] Digital Media Technol Key Lab Shandong Prov, Jinan, Shandong, Peoples R China
[11] Shandong Univ, Dept Software, Jinan, Shandong, Peoples R China
[12] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
基金
美国国家卫生研究院;
关键词
fetal cortical atlas; growth pattern; parcellation; HUMAN CEREBRAL-CORTEX; HUMAN BRAIN; AUTOMATIC QUANTIFICATION; FOLDING PATTERNS; MRI; ASYMMETRIES; INFANTS; RECONSTRUCTION; CONSTRUCTION; GYRIFICATION;
D O I
10.1002/hbm.24637
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Defining anatomically and functionally meaningful parcellation maps on cortical surface atlases is of great importance in surface-based neuroimaging analysis. The conventional cortical parcellation maps are typically defined based on anatomical cortical folding landmarks in adult surface atlases. However, they are not suitable for fetal brain studies, due to dramatic differences in brain size, shape, and properties between adults and fetuses. To address this issue, we propose a novel data-driven method for parcellation of fetal cortical surface atlases into distinct regions based on the dynamic "growth patterns" of cortical properties (e.g., surface area) from a population of fetuses. Our motivation is that the growth patterns of cortical properties indicate the underlying rapid changes of microstructures, which determine the molecular and functional principles of the cortex. Thus, growth patterns are well suitable for defining distinct cortical regions in development, structure, and function. To comprehensively capture the similarities of cortical growth patterns among vertices, we construct two complementary similarity matrices. One is directly based on the growth trajectories of vertices, and the other is based on the correlation profiles of vertices' growth trajectories in relation to a set of reference points. Then, we nonlinearly fuse these two similarity matrices into a single one, which can better capture both their common and complementary information than by simply averaging them. Finally, based on this fused similarity matrix, we perform spectral clustering to divide the fetal cortical surface atlases into distinct regions. By applying our method on 25 normal fetuses from 26 to 29 gestational weeks, we construct age-specific fetal cortical surface atlases equipped with biologically meaningful parcellation maps based on cortical growth patterns. Importantly, our generated parcellation maps reveal spatially contiguous, hierarchical and bilaterally relatively symmetric patterns of fetal cortical surface development.
引用
收藏
页码:3881 / 3899
页数:19
相关论文
共 50 条
  • [1] FETAL CORTICAL PARCELLATION BASED ON GROWTH PATTERNS
    Xia, Jing
    Zhang, Caiming
    Wang, Fan
    Benkarim, Oualid M.
    Sanroma, Gerard
    Piella, Gemma
    Gonzalez Balleste, Miguel A.
    Hahner, Nadine
    Eixarch, Elisenda
    Shen, Dinggang
    Li, Gang
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 696 - 699
  • [2] Unsupervised fetal cortical surface parcellation
    Dahdouh, Sonia
    Limperopoulos, Catherine
    [J]. MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [3] MarsAtlas: A cortical parcellation atlas for functional mapping
    Auzias, Guillaume
    Coulon, Olivier
    Brovelli, Andrea
    [J]. HUMAN BRAIN MAPPING, 2016, 37 (04) : 1573 - 1592
  • [4] Parcellation of Infant Surface Atlas Using Developmental Trajectories of Multidimensional Cortical Attributes
    Li, Gang
    Wang, Li
    Gilmore, John H.
    Lin, Weili
    Shen, Dinggang
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 543 - 550
  • [5] A sub plus cortical fMRI-based surface parcellation
    Lewis, John D.
    Bezgin, Gleb
    Fonov, Vladimir S.
    Collins, D. Louis
    Evans, Alan C.
    [J]. HUMAN BRAIN MAPPING, 2022, 43 (02) : 616 - 632
  • [6] AUTOMATIC CORTICAL SURFACE PARCELLATION BASED ON FIBER DENSITY INFORMATION
    Zhang, Degang
    Guo, Lei
    Li, Gang
    Nie, Jingxin
    Deng, Fan
    Li, Kaiming
    Hu, Xintao
    Zhang, Tuo
    Jiang, Xi
    Zhu, Dajiang
    Zhao, Qun
    Liu, Tianming
    [J]. 2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 1133 - 1136
  • [7] Functional parcellation of the neonatal cortical surface
    Myers, Michael J.
    Labonte, Alyssa K.
    Gordon, Evan M.
    Laumann, Timothy O.
    Tu, Jiaxin C.
    Wheelock, Muriah D.
    Nielsen, Ashley N.
    Schwarzlose, Rebecca F.
    Camacho, M. Catalina
    Alexopoulos, Dimitrios
    Warner, Barbara B.
    Raghuraman, Nandini
    Luby, Joan L.
    Barch, Deanna M.
    Fair, Damien A.
    Petersen, Steven E.
    Rogers, Cynthia E.
    Smyser, Christopher D.
    Sylvester, Chad M.
    [J]. CEREBRAL CORTEX, 2024, 34 (02)
  • [8] From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas
    Lopez-Lopez, Narciso
    Vazquez, Andrea
    Houenou, Josselin
    Poupon, Cyril
    Mangin, Jean-Francois
    Ladra, Susana
    Guevara, Pamela
    [J]. FRONTIERS IN NEUROINFORMATICS, 2020, 14
  • [9] GeoSP: A parallel method for a cortical surface parcellation based on geodesic distance
    Lopez-Lopez, Narciso
    Vazquez, Andrea
    Poupon, Cyril
    Mangin, Jean-Francois
    Ladra, Susana
    Guevara, Pamela
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1696 - 1700
  • [10] Automatic Cortical Gyral Parcellation Using Probabilistic Atlas and Graph Cuts
    Li, Gang
    Guo, Lei
    Zhang, Tuo
    Nie, Jingxin
    Liu, Tianming
    [J]. MEDICAL IMAGING AND AUGMENTED REALITY, 2010, 6326 : 438 - +